Carbon dioxide emission from soils of marsh ecosystems in the south-eastern Barents Sea
- 作者: Bobrik A.A.1, Kazhukalo G.A.1, Bagdasarov I.E.1, Terebova E.N.2, Pavlova M.A.2, Krasilnikov P.V.1
-
隶属关系:
- Lomonosov Moscow State University
- Petrozavodsk State University
- 期: 编号 8 (2025)
- 页面: 1055-1068
- 栏目: SOIL CHEMISTRY
- URL: https://ogarev-online.ru/0032-180X/article/view/306472
- DOI: https://doi.org/10.31857/S0032180X25080056
- EDN: https://elibrary.ru/inumpd
- ID: 306472
如何引用文章
详细
The study is aimed at solving fundamental problems of soil science and ecology related to assessing the carbon balance in coastal soils and ecosystems of the Russian Arctic, as well as their functioning in a changing climate. The study estimated carbon dioxide emissions from soils of marsh ecosystems on the southeastern coast of the Barents Sea for the first time. Soils of marsh ecosystems are characterized by high values of carbon dioxide emissions (4.03 ± 0.17 g С/(m2 day), June–July 2024), which indicates their high biological activity. The analysis of data on CO2 emissions from soils of marsh ecosystems indicates mainly their high spatial variability. Soils at different levels of marsh ecosystems statistically significantly differ in the magnitude of CO2 emissions and line up in order of increasing values: wadden, beaches < littoral pools, eroded benches of the marsh < ecotone zones, lower marshes, splash zones of backflow channels (creeks) < middle and upper marshes. It has been established that lower values of CO2 emissions are observed on marshes subject to intense wind waves, which is due to the armoring role of coastal relief forms in the migration of thalassogenic matter. Despite the insignificant area of the coastal zone of the southeast of the Barents Sea, the contribution of soils of marsh ecosystems to the global flow of greenhouse gases cannot be neglected. The results of the study, obtained on the basis of statistical analysis of a large array of data, contribute to a better understanding of the role of marsh ecosystems of the western sector of the Russian Arctic in the carbon balance.
作者简介
A. Bobrik
Lomonosov Moscow State University
Email: ann-bobrik@yandex.ru
Moscow, 119991 Russia
G. Kazhukalo
Lomonosov Moscow State University
Email: ann-bobrik@yandex.ru
Moscow, 119991 Russia
I. Bagdasarov
Lomonosov Moscow State University
Email: ann-bobrik@yandex.ru
Moscow, 119991 Russia
E. Terebova
Petrozavodsk State University
Email: ann-bobrik@yandex.ru
Petrozavodsk, 185910 Russia
M. Pavlova
Petrozavodsk State University
Email: ann-bobrik@yandex.ru
Petrozavodsk, 185910 Russia
P. Krasilnikov
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: ann-bobrik@yandex.ru
Moscow, 119991 Russia
参考
- Бабина Н.В. Галофитная растительность западного побережья Белого моря // Растительность России. 2002. № 3. C. 3–21.
- Бобрик А.А., Гончарова О.Ю., Матышак Г.В., Рыжова И.М., Макаров М.И., Тимофеева М.В. Распределение компонентов углеродного цикла почв лесных экосистем северной, средней и южной тайги Западной Сибири // Почвоведение. 2020. № 11. С. 1328–1340. https://doi.org/10.31857/S0032180X20110052
- Бобрик А.А., Гончарова О.Ю., Матышак Г.В., Рыжова И.М., Макаров М.И. Влияние геокриологических условий и свойств почв на пространственное варьирование эмиссии СО2 почвами плоскобугристых болот островной криолитозоны Западной Сибири // Почвоведение. 2016. № 12. С. 1445–1456. https://doi.org/10.7868/S0032180X1610004X
- Лесков А.И. Геоботанический очерк приморских лугов Малоземельского побережья Баренцева моря // Ботанический журнал. 1936. Т. 88. № 2. С. 60–74.
- Мировая реферативная база почвенных ресурсов. Международная система почвенной классификации для диагностики почв и составления легенд почвенных карт / Пер. с англ. С. Фортовой. М.: МАКС Пресс, 2024. 248 с. https://doi.org/10.29003/m4174.978-5-317-07235-3
- Мосеев Д.С., Сергиенко Л.А. Структура растительного покрова юго-восточного побережья Белого моря (залив Сухое Море) // Hortus Botanicus. 2016. № 11. C. 19–33. https://doi.org/10.15393/j4.art.2016.3242
- Орешникова Н.В., Красильников П.В., Шоба С.А. Маршевые почвы Карельского берега Белого моря // Вестник Моск. ун-та. Сер. 17, почвоведение. 2012. № 4. C. 13–20.
- Смагин А.В. Газовая фаза почв. М.: Изд-во Моск. ун-та, 2005. 301 с.
- Adam P. Saltmarshes in a time of change // Environ. Conservation. 2002. V. 29. P. 39–61. https://doi.org/10.1017/S0376892902000048
- Bagdasarov I.E., Tseits M.A., Kryukova I.A., Taskina K.B., Bobrik A.A., Ilichev I.A., Cheng J., Xu L., Krasilnikov P.V. Carbon stock in coastal ecosystems of tombolos of the White and Baltic seas // Land. 2024. V. 13. P. 1–21. https://doi.org/10.3390/land13010049
- Barbier E.B., Hacker S.D., Kennedy C., Koch E.W., Stier A.C., Silliman B.R. The value of estuarine and coastal ecosystem services // Ecological Monographs. 2011. V. 81. P. 169–193. https://doi.org/10.1890/10-1510.1
- Bonneville M.C., Strachan I.B., Humphreys E.R., Roulet N.T. Net ecosystem CO2 exchange in a temperate cattail marsh in relation to biophysical properties // Agricultural and Forest Meteorology. 2008. V. 148. P. 69–81. https://doi.org/10.1016/j.agrformet.2007.09.004
- Cahoon D.R., Lynch J.C., Powell A.N. Marsh vertical accretion in a southern California estuary, USA // Estuarine, Coastal and Shelf Science. 1996. № 4. P. 19–32. https://doi.org/10.1006/ecss.1996.0055
- Chapman V.J. Salt Marshes and Salt Deserts оf the World. London: Leonard Hill Limited. 1960. 392 p.
- Chmura G.L., Anisfeld S.C., Cahoon D.R., Lynch J.C. Global carbon sequestration in tidal, saline wetland soils // Global Biogeochemical Cycles. 2003. V. 17. P. 1–12. https://doi.org/10.1029/2002GB001917
- Craft C. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and US tidal marshes // Limnology and Oceanography. 2007. V. 52. P. 1220–1230. https://doi.org/10.4319/lo.2007.52.3.1220
- Duarte C.M., Losada I.J., Hendriks I.E., Mazarrasa I., Marbà N. The role of coastal plant communities for climate change mitigation and adaptation // Nature Climate Change. 2013. V. 3. P. 961–968. https://doi.org/10.1038/nclimate1970
- Fagherazzi S., FitzGerald D.M., Fulweiler R.W., Hughes Z., Wiberg P.L., McGlathery K.J., Johnson D.S. Ecogeomorphology of salt marshes // Treatise on Geomorphology / Ed. Shroder J.F. 2013. V. 12. Ch. 12. P. 182–200. https://doi.org/10.1016/B978-0-12-374739-6.00329-8
- Gedan B., Silliman B.R., Bertness M.D. Centuries of human-driven change in salt marsh ecosystems // Ann. Rev. Marine Sci. 2009. V. 1. P. 117–141. https://doi.org/10.1146/annurev.marine.010908.163930
- Gilby B., Weinstein M.P., Alford S.B., Baker R., Cebrián J., Chelsky A., Connolly R.M. Human impacts drive structural changes at multiple spatial scales across salt marsh seascapes that impinge upon ecosystem services // Estuaries and Coasts. 2020. V. 44. P. 1–9. https://doi.org/10.1007/s12237-020-00830-0
- Golovatskaya E.A., Veretennikova E.E., Dyukarev E.A. Greenhouse Gas Fluxes and Carbon Sequestration in the Oligotrophic Peat Soils of Southern Taiga in Western Siberia // Eurasian Soil Sc. 2024. V. 57. P. 210–219. https://doi.org/10.1134/S1064229323602871
- Guo H., Noormets A., Zhao B., Chen J., Sun G., Gu Y., Chen J. Tidal effects on net ecosystem exchange of carbon in an estuarine wetland // Agricultural and Forest Meteorology. 2009. № 149. P. 1820–1828. https://doi.org/10.1016/j.agrformet.2009.06.010
- Han L., Yang J., Yu G., Wang P., Y. Gao Mao Environmental controls on net ecosystem CO2 exchange over a reed (Phragmites australis) wetland in the Yellow River Delta, China // Estuaries and Coasts. 2013. V. 36. P. 401–413. https://doi.org/10.1007/s12237-012-9572-1
- Heinsch F.A., Heilman J.L., McInnes K.J., Cobos D.R., Zuberer D.A., Roelke D.L. Carbon dioxide exchange in a high marsh on the Texas Gulf Coast: effects of freshwater availability // Agricultural and Forest Meteorology. 2004. V. 125. P. 159-172. https://doi.org/10.1016/j.agrformet.2004.02.007
- Hirota M., Tang Y., Hu Q., Hirata S., Kato T., Mariko W. Carbon dioxide dynamics and controls in a deep-water wetland on the Qinghai-Tibetan Plateau // Ecosystems. 2006. V. 9. P. 673–688. https://doi.org/10.1007/s10021-006-0029-x
- Howard J., Hoyt S., Isensee K., Telszewski M., Pidgeon E. Coastal blue carbon: methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature. Arlington, Virginia, USA, 2014. 186 p.
- Kathilankal J.C., Mozdzer T.J., Fuentes J.D., D’Odorico P., McGlathery K.J., Zieman J.C. Tidal influences on carbon assimilation by a salt marsh // Environ. Res. Lett. 2008. V. 3. P. 044010. https://doi.org/10.1088/1748-9326/3/4/044010
- Kurganova I.N., Karelin D.V., Kotlyakov V.M., Prokushkin A.S., Zamolodchikov D.G., Ivanov A.V., Shmakova N.Y. A pilot national network for monitoring soil respiration in Russia: First results and prospects of development // Doklady Earth Sciences. 2024. V. 518. P. 1947–1954. https://doi.org/10.1134/S1028334X24603377
- Larsen E., Kjær K.H., Demidov I.N., Funder S., Grøsfjeld K., Houmark-Nielsen M., Jensen M., Linge H., Lysa A. Late Pleistocene glacial and lake history of northwestern Russia // Boreas. 2006. V. 35. P. 394–424. https://doi.org/10.1080/03009480600781958
- Lovelock C.E., Reef R. Variable impacts of climate change on blue carbon // One Earth. 2020. V. 3. P. 195–211. https://doi.org/10.1016/j.oneear.2020.07.010
- Mcleod E., Chmura G.L., Bouillon S., Salm R., Björk M., Duarte C.M., Lovelock C.E., Silliman B.R. A Blueprint for Blue Carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 // Frontiers in Ecology and the Environment. 2011. V. 9. P. 552–560. https://doi.org/10.1890/110004
- McTigue N., Davis J., Rodriguez A.B., McKee B., Atencio A., Currin C. Sea level rise explains changing carbon accumulation rates in a salt marsh over the past two millennia // J. Geophys. Res. Biogeosciences. 2019. V. 124. P. 2945–2957. https://doi.org/10.1029/2019JG005207
- Namsaraev Z., Bobrik A., Kozlova A., Krylova A., Rudenko A., Mitina A., Saburov A., et al. Carbon emission and biodiversity of Arctic soil microbial сommunities of the Novaya Zemlya and Franz Josef Land Archipelagos // Microorganisms. 2023. V. 11. https://doi.org/10.3390/microorganisms11020482
- Nellemann C., Corcoran E. Blue Carbon: The Role of Healthy Oceans in Binding Carbon: a Rapid Response Assessment. UNEP/Earthprint, 2009. 79 p.
- Olsson L., Ye S., Yu X., Wei M., Krauss K.W., Brix H. Factors influencing CO2 and CH4 emissions from coastal wetlands in the Liaohe Delta, Northeast China // Biogeosciences. 2025. V. 12. P. 4965–4977. https://doi.org/10.5194/bg-12-4965-2015
- Pennings C., Bertness M.D. Salt marsh communities // Marine Community Ecology. 2001. V. 11. P. 289–316.
- Tseits M.A., Marechek M.S. The formation of soil cover patterns on tidal marshes of the Arctic of Russia // Moscow University Soil Sci. Bull. 2021. V. 76. P. 273–282. https://doi.org/10.3103/S0147687421050057
- Xu X., Zou X., Cao L., Zhamangulova N., Zhao Y., Tang D., Liu D. Seasonal and spatial dynamics of greenhouse gas emissions under various vegetation covers in a coastal saline wetland in southeast China // Ecol. Engineer. 2014. V. 73. P. 469–477. https://doi.org/10.1016/j.ecoleng.2014.09.087
- Zedler J.B., Winfield T., Williams P. Salt marsh productivity with natural and altered tidal circulation // Oecologia. 1980. V. 44. P. 236–240. https://doi.org/10.1007/BF00572685
- Zhou L., Zhou G., Jia Q. Annual cycle of CO2 exchange over a reed (Phragmites australis) wetland in Northeast China // Aquatic Botany. 2009. V. 91. P. 91–98. https://doi.org/10.1016/j.aquabot.2009.03.002
补充文件
