Phylogenetic position of Polymorphus phippsi Kostylew, 1922 and Polymorphus magnus Skrjabin, 1913 (Palaeacanthocephala, Polymorphidae) ascertained on the basis of molecular data

封面

如何引用文章

全文:

详细

Polymorphidae is a family of acanthocephalans, obligatory parasites with a complex life cycle involving arthropods as intermediate hosts and vertebrates of different taxa as definitive hosts. The current taxonomy of Polymorphidae seems to be equivocal. Its type genus Polymorphus has been shown to be polyphyletic based on molecular data. We obtained partial sequences of 28S rDNA gene and cox1 mitochondrial gene of two species of this genus, Polymorphus phippsi and P. magnus, and used them in a reconstruction of the polymorphid phylogeny. As a result, P. magnus was included into the same clade as the type species of the genus, P. minutus, while P. phippsi appeared to be close to Profilicollis spp. The position of P. phippsi agrees with the polyphyly of Polymorphus but does not correspond to its taxonomic status based on described phenotypic characters.

全文:

Acanthocephala, so-called thorny-headed worms, is a small phylum of obligatory endoparasites related to the Syndermata (Ahlrichs, 1997). To date only ca. 1300 species of acanthocephalans have been described (Khokhlova, 1986; Amin, 2013; Smales, 2015).

Also known as thorny-headed worms, acanthocephalans have a complex life cycle involving the intermediate host (an arthropod) and the definitive host (a vertebrate) (Khokhlova, 1986). It was shown that several species use paratenic hosts (Sharpilo, Salamatin, 2005). Classes and major orders of the phylum Acanthocephala were considered as monophyletic taxa with strong support by molecular and morphological data (Garcia-Varela et al., 2000; Amin, 2013; Monks, 2001). However, the composition of families and genera based on morphological characters is ambiguous (Amin, 2013). Data of molecular phylogeny are contrary to taxonomy based on phenotypic characters, especially in regard to family Polymorphidae (Garcia-Varela et al., 2013).

Polymorphidae is a species-rich family related to the class Palaeacanthocephala. Its type genus Polymorphus Lühe, 1911 demonstrated polyphyly (Garcia-Varela et al., 2013). An assemblage of new molecular data from other Polymorphus spp. can yield to changes in polymorphid phylogenetic tree topology. In this study we obtained new sequences of two widespread highly pathogenic for definitive hosts (water birds) Polymorphus spp. – P. phippsi Kostylew, 1922 and P. magnus Skrjabin, 1913, and added them to the phylogenetic reconstruction of the Polymorphidae.

MATERIALS AND METHODS

Larvae of P. phippsi 2-3 were collected from naturally infected amphipods Gammarus setosus (Luvenga, White Sea, Russia, 11.07.2019) and juvenile P. phippsi 1 were collected from Herring gull Larus argentatus (Dalnye Zelentsy, Barents Sea, Russia, 2001) and identified using Uspenskaya (1963) guide. A subadult specimen of P. magnus was isolated from Slaty-backed gull Larus schistisagus experimentally infected with cystacanths from naturally infected G. lacustris collected in the tundra lake situated close to the mouth of Chaun-Pucheveem river in area of Chaun research station (Chaun Bay coast, East-Siberian sea, Russia, July 2019). Species identification was carried out basing on Khokhlova (1986) guide and our experience.

The acanthocephalans were fixed in 96% ethanol, stained in Bömer’s hematoxylin (except for P. phippsi 1) and mounted in Canada balsam. Before staining, pieces of tissue were cut off and DNA was extracted from them using Chelex-100 procedure (De Lamballerie et al., 1992). Polymerase chain reactions (PCR) were performed with 5X ScreenMix (Evrogen, Moscow). Partial CDS of 28s rRNA were amplified using two overlapping PCR fragments of 2000–2500 bp. Primers for amplicon 1 were forward 5’-CAAGTACCGTGAGGGAAAGTTGCGC and reverse 5’-CTTCTCCAAC(T/G)TCAGTCTTCAA; amplicon 2 forward 5’-CTAAGGAGTGTGTAACAACTCACC and reverse 5’-CTTCGCAATGATAGGAAGAGCC (Garcia-Varela, Nadler, 2005). Partial CDS of cytochrome-oxydase I were amplified using forward primer 5’-AGTTCTAATCATAA(R)GATAT(Y)GG and reverse 5’-TAAACTTCAGGGTGACCAAAAAATCA (Folmer et al., 1994). PCR cycling parameters included denaturation at 94ºC for 3 min, followed by 35 cycles of denaturation at 94ºC for 1 min, annealing at 65ºC(28s)/60º(CO1) for 1 min, and elongation at 72ºC for 2 min, followed by final elongation at 72ºC for 4 min. PCR products were sequenced using Sanger’s technology in the resource center “Development of molecular and cellular technology” of St. Petersburg State University. Initial sequence analysis and reads assemblage was performed using ChromasPro 1.42.

We used 28S rDNA and CO1 mtDNA alignments from Garcia-Varela et al. (2013) as a template (table 1). Both amplicons of 28s rDNA were added to the corresponding alignment and then aligned in SeaView 4 (Gouy et al., 2010). The same procedure was performed for both CO1 sequences. CO1 alignment was trimmed according to the shortest sequence, 588 bp in length. Alignment of 28S rDNA was trimmed according to the common length of two overlapping amplicons from P. phippsi samples, so that its length was 2966 bp. We counted optimal substitution models and phylogenetic distances using MEGA 11.0.11 (Tamura et al., 2021) for each separate alignment. After that we created a concatenate matrix using SeaView 4.

 

Table 1. Source information

Species

Host

Locality

28s rDNA GenBank №

CO1 GenBank №

Andracantha gravida

Phalacrocorax auritus

Yucatán, México

EU267814

EU267822

Arhythmorhynchus frassoni 1

Uca spinicarpa

Yucatán, México

JX442176

EU189484

Arhythmorhynchus frassoni 2

Eudocimus albus

Sinaloa, México

JX442177

JX442188

Bolbosoma turbinella

Eschrichtius robustus

Monterey Bay, California, USA

JX442178

JX442189

Bolbosoma sp.

Callorhinus ursinus

St. Paul Island, Alaska, USA

JX442179

JX442190

Corynosoma australe

Phocarctos hookeri

New Zealand

JX442180

JX442191

Corynosoma enhydri

Enhydra lutris

Monterey Bay, California, USA

AY829107

DQ089719

Corynosoma magdaleni

Phoca hispida saimensis

Lake Saimaa, Finland

EU267815

EF467872

Corynosoma obtuscens

Callorhinus ursinus

St. Paul Island, Alaska, USA

JX442181

JX442192

Corynosoma strumosum

Phoca vitulina

Monterey Bay, California, USA

EU267816

EF467870

Corynosoma validum

Callorhinus ursinus

St. Paul Island, Alaska, USA

JX442182

JX442193

Ibirhynchus dimorpha

Eudocimus albus

Veracruz, México

GQ981437

GQ981438

Hexaglandula corynosoma

Nyctanassa violacea

Veracruz, México

EU267817

EF467869

Polymorphus brevis 1

Nycticorax nycticorax

Michoacán, México

AY829105

DQ089717

Polymorphus brevis 2

Nycticorax nycticorax

Michoacán, México

JX442183

JX442194

Polymorphus minutus

Gammarus pulex

Dijon, France

EU267819

EF467865

Polymorphus obtusus

Ahythya affinis

Baja California Sur, México

JX442184

JX442195

Polymorphus trochus

Fulica america

Sinaloa, México

JX442185

JX442196

Profilicollis altmani

Enhydra lutris

Monterey Bay, California, USA

AY829108

DQ089720

Profilicollis botulus 1

Somateria mollissima

Denmark

EU267818

EF467862

Profilicollis botulus 2

Anas platyrhynchos

USA

AY829109

DQ089721

Profilicollis bullocki

Emerita analoga

Caleta Lenga, Chile

JX442186

JX442197

Pseudocorynosoma constrictum

Anas clypeata

Estado de México, México

EU267812

EU267820

Pseudocorynosoma anatarium

Bucephala albeola

Durango, México

EU267813

EU267821

Pseudocorynosoma sp.

Oxyura jamaicensis

Durango, México

JX442187

JX442198

Southwellina hispida 1

ND

Hallai, USA

EU267810

EF467866

Southwellina hispida 2

Tigrisoma mexicanum

Veracruz, México

EU267811

EF467867

Centrorhynchus sp.

Falco peregrinus

California, USA

AY829104

DQ089716

Gorgorhynchoides bullocki

Eugerres plumieri

Quintana Roo, México

AY829103

DQ089715

Plagiorhynchus cylindraceus

Porcilio saber

Dijon, France

AY829102

DQ089724

Polymorphus phippsi 1 (This study)

Larus argentata

Dalnye Zelentsy, Barents sea, Russia

OK235421 (1st amplicon)

-

Polymorphus phippsi 2 (This study)

Gammarus setosus

Luvenga, White sea, Russia

-

OL676091

Polymorphus phippsi 3 (This study)

Gammarus setosus

Luvenga, White sea, Russia

ON667751 (2nd amplicon)

OL676687

Polymorphus magnus (This study)

Larus schistisagus

Chaun, Chukotka, Russia

-

OL689013

 

For P. phippsi 1 CO1 sequence and fragments of 28S rDNA for P. phippsi 3 and P. magnus was replaced with missing data, such as 28S rDNA ‒ for P. phippsi 3 and P. magnus (table 1).

Phylogenetic relationships were determined by maximum-likelihood analysis in CIPRES Science Gateway platform (Miller et al., 2010) with RaxML-HPC black box tool and by Bayesian analysis in MrBayes 3.2.7a (Ronquist et al., 2012). The following parameters were specified in Bayesian tree search: partitioned model (GTR+G and GTR+G+I for 28S rDNA and CO1, respectively) and setting outgroup identical to the taxset from Garcia-Varela et al. (2013).

RESULTS AND DISCUSSION

Interspecific genetic divergence between 28S rDNA sequences of P. phippsi 1 and P. phippsi 2 (0.028) was greater than that between the sequences from samples of one species (Arhytmorhynchus frassoni 0.016, Southwellina hispida 0.003, Polymorphus brevis 0.002) but smaller than the divergence between different congeneric species (average for Corynosoma spp. 0.06, for Profilicollis spp. 0.04). Divergence between P. phippsi 2 and P. phippsi 3 (0.008) was smaller than that between the sequences from samples of one species (Arhytmorhynchus frassoni 0.193 COI, Southwellina hispida 0.048, Polymorphus brevis 0.014). All the sequences from samples of P. phippsi were grouped together in a well-supported clade (fig. 1). We can conclude that the three samples were cophenetic. Overall topologies of our tree and the tree from the previous research (Garcia-Varela et al., 2013) were congruent. Bayesian and maximum-likelihood trees yielded the same topology (fig. 1). The clade containing P. phippsi sequences grouped with the clade containing Profilicollis bullocki and Pr. altmani, with Pr. botulus being basal to this clade. P. magnus grouped in one clade with P. obtusus, while P. minutus was basal to this clade.

 

Figure 1. Phylogenetic relationships inferred from combined 28S rDNA + COI data set. Numbers near internal nodes show ML/MP bootstrap clade frequencies (percents) and posterior probabilities clade frequencies (percents). Clade containing Polymorphus phippsi sequences is highlighted in violet and Polymorphus magnus – in blue.

 

The position of P. phippsi in our phylogenetic reconstructions supports the polyphyly of Polymorphus postulated by Garcia-Varela et al. (2013). The position of P. magnus corresponds to its accepted taxonomic status (Khokhlova, 1986). Thus, it is likely that assemblage of new molecular data can outline only more contradictions with accepted taxonomy of Polymorphidae. In this case the necessity of taxonomic characters revision, including additional data of comparative morphology, can appear.

ACKNOWLEDGEMENTS

Authors express their gratitude to K.V. Regel (Magadan, IBPN FEB RAS) for her help with sampling. Authors express gratitude to the administration of Kandalakschsky reserve and Murmansk Marine Biology Institute RAS for the possibility to collect and handle samples. The molecular studies were performed in the Saint-Petersburg State University resource center “Development of molecular and cellular technology”.

FUNDING

This work was supported by the Russian Science Foundation (grant no. 23-14-00329) and State Academic Programs no. 122031100260-0 “Biodiversity of parasites, their life cycles, biology and evolution” and no. 1021060307693-0 “Helminths in the Biocenoses of North-Eastern Asia: Biodiversity, Morphology, and Molecular Phylogenetics”.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

This work does not contain any studies involving human and animal subjects.

×

作者简介

A. Diumina

Zoological Istitute of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: aleksandra.diumina@zin.ru
俄罗斯联邦, Universitetskaya emb., 1, Saint-Petersburg, 199034

K. Galaktionov

Zoological Istitute of Russian Academy of Sciences

Email: kirill.galaktionov@zin.ru
俄罗斯联邦, Universitetskaya emb., 1, Saint-Petersburg, 199034

G. Atrashkevich

Institute of the Biological Problems of the North Far East Branch of Russian Academy of Sciences

Email: gatr@ibpn.ru
俄罗斯联邦, Portovaya str., 18, Magadan, 685000

参考

  1. Ahlrichs W.H. 1997. Epidermal ultrastructure of Seison nebaliae and Seison annulatus, and a comparison of epidermal structures within the Gnathifera. Zoomorphology 117 (1): 41–48.
  2. Amin O.M. 2013. Classification of the Acanthocephala. Folia Parasitologica 60 (4): 273–305.
  3. De Lamballerie X., Zandotti C., Vignoli C., Bollet C., De Micco P. 1992. A one-step microbial DNA extraction method using “Chelex 100” suitable for gene amplification. Research in Microbiology 143 (8): 785–790.
  4. Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. 1994. Phylogenetic uncertainty. Molecular Marine Biology Biotechnology 3: 294–299.
  5. García-Varela M., Pérez-Ponce de León G., de la Torre P., Cummings M.P., Sarma S.S.S., Laclette J.P. 2000. Phylogenetic relationships of Acanthocephala based on analysis of 18S ribosomal RNA gene sequences. Journal of Molecular Evolution 50: 532–540.
  6. García-Varela M., Nadler S.A. 2005. Phylogenetic relationships of Palaeacanthocephala (Acanthocephala) inferred from SSU and LSU rDNA gene sequences. Journal of Parasitology 91(6): 1401–1409.
  7. García-Varela M., de León G.P.P., Aznar F.J., Nadler S.A. 2013. Phylogenetic relationship among genera of Polymorphidae (Acanthocephala), inferred from nuclear and mitochondrial gene sequences. Molecular Phylogenetics and Evolution 68(2) 176–184.
  8. Gouy M., Guindon S., Gascuel O. 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27(2): 211–224.
  9. Khokhlova I.G. 1986. Acanthocephala of terrestrial vertebrates of the USSR. Moscow, Nauka, 275 pp. [In Russian].
  10. Miller M.A., Pfeiffer W., Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees // 2010 gateway computing environments workshop (GCE). Ieee 1–8.
  11. Monks S. 2001. Phylogeny of the Acanthocephala based on morphological characters // Systematic Parasitology 48(2): 81–115.
  12. Ronquist F., Eslenko M., Van der Mark P., Ayres D.L., Arling A.D., Höhn S., Larget B., Suchard M.A., Huelsenbeck J.P.H. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space // Systematic biology 61 (3): 539–542.
  13. Sharpilo V.P., Salamatin R. 2005. Paratenic parasitism: origins and development of the concept. Ukraine, Kyiv, Logos, 237 pp. [In Russian].
  14. Smales L. 2015. Acanthocephala. In: Schmidt-Rhaesa A. (Ed.) Handbook of Zoology. V. 3. Gastrotricha, Cycloneuralia, Gnathifera. De Gruyter Publ., 317–336.
  15. Tamura K., Stecher G., Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. 38(7): 3022–3027.
  16. Uspenskaya A.V. 1963. The parasite fauna of deep-water Crustacea in East Murmansk. Moscow-Leningrad, USSR Academy of Sciences, 128 pp.

补充文件

附件文件
动作
1. JATS XML
2. Figure 1. Phylogenetic relationships inferred from combined 28S rDNA + COI data set. Numbers near internal nodes show ML/MP bootstrap clade frequencies (percents) and posterior probabilities clade frequencies (percents). Clade containing Polymorphus phippsi sequences is highlighted in violet and Polymorphus magnus – in blue.

下载 (334KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».