Cell Ultrastructure of Mirovia macrophylla (Florin) Nosova (Pinopsida) from the Lower Cretaceous of Yakutia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article presents the results of cytochemical and anatomical studies of the conifer leaf of Mirovia macrophylla from the Lower Cretaceous of the Lena Coal Basin in Yakutia. For the first time, the presence of cells with preserved nuclei was revealed for an early Cretaceous conifer, but in the nuclear chromatin the DNA-deoxyribose skeleton, which serves as a target for the Schiff reagent during the Feulgen reaction, was not preserved. Chloroplasts with a thylakoid system were also found in the leaf cells, and inclusions were observed in the chloroplasts, with the larger ones likely being starch grains and the smaller ones being plastoglobuli. In some cells, grooved globules were found, presumably tannins.

About the authors

I. A Ozerov

Komarov Botanical Institute of RAS

Email: igorozerov@mail.ru
St. Petersburg, Russia

N. A Zhinkina

Komarov Botanical Institute of RAS

St. Petersburg, Russia

A. A Torshilova

Komarov Botanical Institute of RAS

St. Petersburg, Russia

N. K Koteyeva

Komarov Botanical Institute of RAS

St. Petersburg, Russia

N. V Nosova

Komarov Botanical Institute of RAS

St. Petersburg, Russia

References

  1. Барыкина Р.П., Веселова Т.Д., Девятов А.Г. и др. Справочник по ботанической микротехнике. Основы и методы. М.: Изд-во МГУ, 2004. 311 с.
  2. Жинкина Н.А., Озеров И.А. Методика окрашивания тканей ископаемых растений по Фёльгену // Ботан. журн. 2008. Т. 93. № 6. С. 951–953.
  3. Киричкова А.И. Фитостратиграфия и флора юрских и меловых отложений Ленского бассейна. Л.: Недра, 1985. 223 с.
  4. Носова Н.В. Род Mirovia Reymanowna (Pinopsida): систематика и строение листьев // Палеоботаника. 2013. Т. 4. С. 36–95.
  5. Озеров И.А., Жинкина Н.А., Торшилова А.А. и др. Фёльген-тестирование ядер клеток листа Taxodium dubium (Cupressaceae) из эоценовой Тавдинской флоры Западной Сибири // Палеонтол. журн. 2022. № 3. С. 77–82.
  6. Пирс Э. Гистохимия теоретическая и прикладная. М.: Изд-во иностр. лит-ры, 1962. 962 с.
  7. Эсау К. Анатомия растений. М.: Мир, 1969. 564 с.
  8. Bailleul A.M. Fossilized cell nuclei are not that rare: Review of the histological evidence in the Phanerozoic // Earth-Sci. Rev. 2021. V. 216. 103599.
  9. Bomfleur B., McLoughlin S., Vajda V. Fossilized nuclei and chromosomes reveal 180 million years of genomic stasis in royal ferns // Science. 2014. V. 343. Р. 1376–1377.
  10. Bose M.N., Manum S.B. Mesozoic conifer leaves with ‘Sciadopitys-likeʼ stomatal distribution. A re-evaluation based on fossils from Spitsbergen, Greenland and Baffin Island // Norsk Polarinst. Skrifter. 1990. V. 192. P. 1–81.
  11. Brack-Hanes S.D., Vaughn J.C. Evidence of Paleozoic chromosomes from Lycopod Microgametophytes // Science. 1978. V. 200. P. 1383–1385.
  12. Bussotti F., Gravano E., Grossoni P., Tani C. Occurrence of tannins in leaves of beech trees (Fagus sylvatica) along an ecological gradient, detected by histochemical and ultrastructural analyses // New Phytol. 1998. V. 138. P. 469–479.
  13. Chieco P., Derenzini M. The Feulgen reaction 75 years on // Histochem. Cell Biol. 1999. V. 111. Р. 345–358.
  14. Darrah W.C. A remarkable fossil Selaginella with preserved female gametophytes // Bot. Mus. Leafl. Harv. Univ. 1938. V. 6. P. 113–136.
  15. Glauser A.L., Harper C.J., Taylor T.N. et al. Reexamination of cell contents in Pennsylvanian spores and pollen grains using Raman spectroscopy // Rev. Palaeobot. Palynol. 2014. V. 210. P. 62–68.
  16. Golenberg E.M., Giannasi D.E., Clegg M.T. et al. Chloroplast DNA sequence from a Miocene Magnolia species // Nature. 1990. V. 344. P. 656–658.
  17. Gupta N.S., Yang H., Leng Q. et al. Diagenesis of plant biopolymers: decay and macromolecular preservation of Metasequoia // Org. Geochem. 2009. V. 40. P. 802–809.
  18. Kim S., Soltis D.E., Soltis P.S. et al. DNA sequences from Miocene fossils: an ndhF sequence of Magnolia latahensis (Magnoliaceae) and an rbcL sequence of Persea pseudocarolinensis (Lauraceae) // Amer. J. Bot. 2004. V. 91. P. 615–620.
  19. Kirkpatrick J.B., Walsh E.A., D’Hondt S. Fossil DNA persistence and decay in marine sediment over hundred-thousandyear to million-year time scales // Geology. 2016. V. 44. P. 615–618.
  20. Kivimaenpaa M., Riikontn J., Sutinen S., Holopinen T. Cell structural changes in the mesophyll of Norway spruce needles by elevated ozone and elevated temperature in openfield exposure during cold acclimation // Tree Physiol. 2014. V. 34. P. 389–403.
  21. Kraus T.E.C., Dahlgren R.A., Zasoski R.J. Tannins in nutrient dynamics of forest ecosystems – a review // Plant Soil. 2003. V. 256. P. 41–66.
  22. Logan G.A., Boon J.J., Eglinton G. Structural biopolymer preservation in Miocene leaf fossils from the Clarkia site, northern Idaho // Proc. Nat. Acad. Sci. USA. 1993. V. 90. P. 2246–2250.
  23. Niklas K.J. Organelle preservation and protoplast partitioning in fossil angiosperm leaf tissues // Amer. J. Bot. 1983. V. 70. P. 543–548.
  24. Nosova N., Wcisło-Luraniec E. A reinterpretaion of Mirovia Reymanowna (Coniferales) based on the reconsideration of the type species Mirovia szaferi Reymanowna from the Polish Jurassic // Acta Palaeobot. 2007. V. 47. № 2. P. 359–371.
  25. Nosova N., Yakovleva O., Ivanova A., Kiritchkova A. First data on the fine structure of the leaf cuticle of a Mesozoic conifer, Mirovia Reymanowna (Miroviaceae) // Rev. Palaeobot. Palynol. 2016. V. 233. P. 115–124.
  26. Ozerov I.A., Zhinkina N.A., Efimov A.M. et al. Feulgen– positive staining of the cell nuclei in fossilized leaf and fruit tissues of the lower Eocene Myrtaceae // Bot. J. Linn. Soc. 2006. V. 150. № 3. P. 315–321.
  27. Ozerov I.A., Zhinkina N.A., Torshilova A.A. et al. Use of DNA-specific stains as indicators of nuclei and extranuclear substances in leaf cells of the Middle Eocene Metasequoia from Arctic Canada // Rev. Palaeobot. Palynol. 2020. V. 279. 104211.
  28. Ozerov I.A., Zhinkina N.A., Torshilova A.A. et al. Chromosomes of fossilized Metasequoia from early Oligocene of Siberia // Rev. Palaeobot. Palynol. 2021. V. 287. 104365.
  29. Qu Y., McLoughlin N., van Zuilen M.A. et al. Evidence for molecular structural variations in the cytoarchitectures of a Jurassic plant // Geology. 2019. V. 47. № 4. P. 325–329.
  30. Schoenhut K., Vann D.R., LePage B.A. Cytological and ultrastructural preservations in Eocene Metasequoia leaves from the Canadian High Arctic // Amer. J. Bot. 2004. V. 91. P. 816–824.
  31. Soltis P.S., Soltis D.E., Smiley C.J. An rbcL sequence from a Miocene Taxodium (bald cypress) // Proc. Nat. Acad. Sci. U.S.A. 1992. V. 89. P. 449–451.
  32. Torshilova A.A., Ozerov I.A., Zhinkina N.A., Rodionov A.V. Seeds Alapaja (Cupressaceae) from the Cretaceous of Western Siberia and their paleo-DNA // Rev. Palaeobot. Palynol. 2025. V. 332. 105236.
  33. Treutter D. Significance of flavonoids in plant resistance: A review // Environ. Chem. Lett. 2006. V. 4. № 3. P. 147–157.
  34. Wang X., Liu W., Du K. et al. Ultrastructure of chloroplasts in fossil Nelumbo from the Eocene of Hainan Island, South China // Plant Syst. Evol. 2014. V. 300. P. 2259–2264.
  35. Yang H., Huang Y., Leng Q. et al. Biomolecular preservation of Tertiary Metasequoia fossil Lagerstatten revealed by comparative pyrolysis analysis // Rev. Palaeobot. Palynol. 2005. V. 134. P. 237–256.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).