Nature of Magnetic Anomalies in the Equatorial Ninetyeast Ridge

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

According to a set of geophysical methods, the equatorial Ninetyeast Ridge and neighboring areas of the Central (to the west) and Wharton (to the east) Basins have been studied. Detailed map of the magnetic anomalies (∆Ta) for this Ninetyeast Ridge segment were created for the first time due to generalization of magnetic data of 5 cruises. The mapped area of 136.6 thousand km2 is located near the Site 216 DSDP. For the first time, it was found that the linear magnetic anomalies C31r and C32n.1n do not terminate front the Ninetyeast Ridge, but continue here from the basins. The calculated interval spreading rate for the ridge is about 45 mm/year. In the Wharton Basin, the N-S Fracture Zone 90°E, along where linear magnetic anomalies ruptured and shifted, has been clarified. Magnetic modeling for the seamount on the eastern slope of the Ninetyeast Ridge allowed assuming that this volcanic structure has deep root. It could be formed as a result of repeated younger ("secondary") magmatism after the formation of the main volcanic massif of the ridge itself. Interpretation of magnetic survey data, heat flow measurements and earthquake mechanisms indicate the presence of modern tectonic activity within the studied section of the ridge.

About the authors

I. A. Veklich

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: veklich.ia@ocean.ru
Moscow, Russia

A. N. Ivanenko

Shirshov Institute of Oceanology, Russian Academy of Sciences

Moscow, Russia

O. V. Levchenko

Shirshov Institute of Oceanology, Russian Academy of Sciences

Moscow, Russia

O. V. Veselov

Institute of Marine Geology and Geophysics, Far East Branch of RAS

Yuzhno-Sakhalinsk, Russia

References

  1. Веклич И.А., Иваненко А.Н., Левченко О.В. Аномальное магнитное поле приэкваториальной части Индийского океана (съемка на полигонах) // Вестник КРАУНЦ. 2020. № 1. Вып. 45. С. 17–37. https://doi.org/10.31431/1816-5524-2020-1-45-17-37
  2. Вержбицкий Е.В., Кононов М.В. Генезис литосферы северной части Мирового океана. М.: Научный мир, 2010. 477 с.
  3. Иваненко А.Н. Моделирование магнитного поля подводных гор // Магнитное поле океана / Городницкий А.М. (ред.) М.: Наука, 1993. С. 68–88.
  4. ЛевченкоО.В., Иваненко А.Н., ВекличИ.А., Турко Н.Н. Рельеф дна и аномальное магнитное поле Восточно-Индийского хребта в районе 5° с.ш. // Океанология. 2023. Т. 63. № 6. С. 987–999. https://doi.org/10.31857/S0030157423060072
  5. Левченко О.В., Сборщиков И.М., Маринова Ю.Г. Тектоника хребта девяностого градуса // Океанология. 2014. Т. 54. № 2. С. 252–266.
  6. Левченко О.В., Сущевская Н.М., Маринова Ю.Г. Природа и история формирования Восточно-Индийского хребта – ключевой тестовой структуры восточной части Индийского океана // Геотехтоника. 2021. № 2. С. 41–69. https://doi.org/10.31857/S0016853X21020065
  7. Лоусон Ч., Хенсон Р. Численное решение задач метода наименьших квадратов. М.: Наука, 1986. 232 с.
  8. Любимова Е.А., Никитина В.Н., Томара Г.А. Тепловые поля внутренних и окраинных морей СССР (наблюдения и теория интерпретации). М.: Наука, 1976. 224 с.
  9. Соинов В.В., Веселов О.В. Полигонные геофизические исследования на Восточно-Индийском хребте // Вторая Тихоокеанская школа по морской геологии и геофизике. Тез. докл. Южно-Сахалинск, 1985. С. 72–73.
  10. Сущевская Н.М., Беляцкий Б.В., Дубинин Е.П., Левченко О.В. Эволюция плюма Кергелен и его влияние на магматизм континентальных и механических областей Восточной Антарктиды // Геохимия. 2017. № 9. С. 782–799. https://doi.org/10.7868/S0016752517090096
  11. Сущевская Н.М., Левченко О.В., Беляцкий Б.В. К вопросу о магматизме и природе поднятия Афанасия Никитина в свете находки циркона с возрастом около трех млрд лет // Океанология. 2022. Т. 62. № 1. С. 135–150. https://doi.org/10.31857/S0030157422010154
  12. Сущевская Н.М., Левченко О.В., Дубинин Е.П., Беляцкий Б.В. Восточно-Индийский хребет – магматизм и геодинамика // Геохимия. 2016. № 3. С. 256–277. https://doi.org/10.7868/S0016752516030067
  13. Сычев П.М., Воробьев В.М. и др. Складчатые деформации осадочного чехла юго-запада Бенгальского залива // Тихоокеанская геология. 1987. № 1. С. 25–36.
  14. Шрейдер А.А. Геомагнитные исследования Индийского океана. М.: Наука, 2001. 319 с.
  15. Шрейдер А.А., Воробьев В.М. Детальные геомагнитные исследования Восточно-Индийского хребта в районе экватора // Океанология. 1988. № 4. С. 597–601.
  16. Alken P., Thebault E., Beggan C.D. et al. International Geomagnetic Reference Field: the thirteenth generation // Earth Planets Space. 2021. V. 73. P. 1–25. https://doi.org/10.1186/s40623–020–01288-x
  17. Bonvalot S., Balmino G., Briais A.et al. World gravity map. Commission for the Geological Map of the World, UNESCO. Paris, France, 2012.
  18. Cannat M., Briais A., Deplus C. et al. Mid-Atlantic Ridge-Azores hotspot interactions: Along-Axis migration of a hotspot-derived magmatic pulse 12 to 4 Ma ago // Earth Planet. Sci. Lett. 1999. V. 173. P. 257–269.
  19. Desa M., Ramana M.V., Ramprasad T. Evolution of the Late Cretaceous crust in the equatorial region of the northern Indian Ocean and its implication in understanding the plate kinematics // Geophys. J. Int. 2009. V. 177. P. 1265–1278. https://doi.org/10.1111/j.1365-246X.2009.04096
  20. Duncan R.A. Age distribution of volcanism along aseismic ridges in the eastern Indian Ocean // Proc. Ocean Drill. Program Sci. Results. 1991. V. 121. P. 507–517.
  21. Ekstrom G., Nettles M., Dziewonski A.M. The global CMT project 2004–2010: centroid moment tensors for 13,017 earthquakes // Phys. Earth Planet. Inter. 2012. V. 200–201. P. 1–9. https://doi.org/10.1016/j.pepi.2012.04.002
  22. Gorodnitskiy A.M., Brusilovskiy Yu.V., Ivanenko A.N. et al. New methods for processing and interpretation of marine magnetic anomalies and their application to structural research and oil and gas exploration in the Kuril forearc, the Barents Sea and the Caspian Sea // Geoscience Frontiers. 2013. V. 4. P. 73–85. https://doi.org/10.1016/j.gsf.2012.06.002
  23. Jiang Q, Olierook H, Jourdan F. et al. Earth’s longest preserved linear volcanic ridge generated by a moving Kerguelen hotspot // Nature Communications. 2024. V. 15. 9692. https://doi.org/10.1038/s41467-024-54092-6
  24. Klootwijk C.T., Gee J.S., Peirce J.W., Smith G.M. Constraints on the India–Asia convergence: paleomagnetic results from Ninetyeast ridge // Proc. Ocean Drill. Program Sci. Results. 1991. V. 121. P. 777–882.
  25. Kopf A., Klaeschen D., Weinrebe W. et al. Geophysical evidence for late stage magmatism at the central Ninetyeast ridge, Eastern Indian Ocean // Marin. Geophys. Res. 2001. V. 22. P. 225–234. https://doi.org/10.1023/A:1012297315620
  26. Krishna K.S., Abraham H., Sager W.W. et al. Tectonics of the Ninetyeast Ridge derived from spreading records in adjacent oceanic basins and age constraints of the ridge // J. Geophys. Res. 2012. V. 117. B04101. P. 1–19. https://doi.org/10.1029/2011B008805
  27. Krishna K.S., Bull J.M., Ishizuka O. et al. Growth of the Afanasy Nikitin seamount and its relationship with the 85°E Ridge, northeastern Indian Ocean // J. Earth Syst. Sci. 2014. V. 123. № 1. P. 33–47.
  28. Krishna K.S., Gopala Rao D., Subba Raju L.V. et al. Paleocene onspreading–axis hotspot volcanism along the Ninetyeast Ridge: An interaction between the Kerguelen hotspot and the Wharton spreading center // Proc. Indian Acad. Sci. (Earth Planet. Sci.). 1999. V. 108. № 4. P. 255–267.
  29. Miller H.G., Singh V. Potential field tilt a new concept for location of potential field sources // Journal of Applied Geophysics. 1994. V. 32. P. 213–217.
  30. Morgan W.J. Deep mantle convection plumes and plate motion // AAPG Bull. 1972. V. 56. P. 203–213.
  31. National Centers for Environmental Information (NCEI). https://www.ngdc.noaa.gov/mgg/trk/trackline/
  32. Neprochnov Yu.P., Gopala Rao D., Subrahmanyan C., Murthy K.S.R. Intraplate deformation in the Central Indian Ocean Basin // Bangalore: Geological Society of India Memoir. 1998. V. 39. P. 250.
  33. Ogg J. Geomagnetic Polarity Time Scale // Geologic Time Scale. Elsevier, 2020. P. 159–192. https://doi.org/10.1016/B978-0-12-824360-2.00005-X
  34. Pringle M.S., Frey F.A., Mervine E.M. A simple linear age progression for the Ninetyeast Ridge, Indian Ocean: New constraints on Indian plate motion and hot spot dynamics // Eos Trans. AGU Fall Meet. Suppl. Abstract. 2008. V. 89 (53). T54B-03.
  35. Royer J.J., Peirce J.W., Weissel J.K. Tectonic constraints on the hot spot formation of Ninetyeast Ridge // Proceed. of the ODP. Scient. Results. 1991. V. 121. P. 763–775.
  36. Ryan W.B.F., Carbotte S.M., Coplan J.O. et al. Global Multi Resolution Topography synthesis // Geochem. Geophys. Geosyst. 2009. V. 10. P. Q03014. https://doi.org/10.1029/2008GC002332
  37. Sager W.W., Bull J.M., Krishna K.S. Active faulting on the Ninetyeast Ridge and its relation to deformation of the Indo-Australian plate // J. Geophys. Res.: Solid Earth. 2013. V. 118. P. 4648–4668. https://doi.org/10.1002/jgrb.50319
  38. Seton M., Whitaker J., Wessel P. et al. Community infrastructure and repository for marine magnetic identifications // Geochemistry, Geophysics, Geosystems. 2014. V. 15. P. 1629–1641. https://doi.org/10.1002/2013GC005176
  39. Singh S.C., Carton H., Chauhan A.S. et al. Extremely thin crust in the Indian Ocean possibly resulting from plume ridge interaction // Geophys. J. Int. 2011. V. 184. P. 29–42. https://doi.org/10.1111/j.1365-246X.2010.04823.x
  40. Thoram S., Sager W.W., Gaastra K. et al. Nature and origin of magnetic lineations within Valdivia Bank: Ocean plateau formation by complex seafloor spreading // Geophysical Research Letters. 2023. V. 50. P.e2023GL103415. https://doi.org/10.1029/2023GL103415
  41. Wessel P., Matthews K.J., Müller R.D. et al. Semiautomatic fracture zone tracking // Geochem. Geophys. Geosyst. 2015. V. 16. https://doi.org/10.1002/2015GC005853
  42. Yutsis V.V., Levchenko O.V., Ivanenko A.N. et al. New Insights into the Seamount Structure of the Northern Part of the Ninetyeast Ridge (Indian Ocean) through the Integrated Analysis of Geophysical Data // J. Mar. Sci. Eng. 2023. V. 11. P. 924. https://doi.org/10.3390/jmse11050924

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).