Seasonal and Interannual Variability of the Upper Mixed Layer Properties in The Barents Sea

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The rapid changes in the ice and hydrological regimes of the Barents Sea that occurred in the 2000s-2010s determined the objective of this paper: to quantitatively assess the seasonal and interannual variability of the relative contributions of processes at the air-sea boundary and in the water column to changes in the thermohaline parameters of the upper mixed layer, which ultimately determine the intra-annual and interannual dynamics of the ice cover. The work used hydrological and ice data from the GLORYS12v1 global ocean reanalysis system and data on the heat balance components at the ocean surface from the ERA-5 global atmospheric reanalysis. The study found that the dominant contribution to the formation of intra-annual variability of the mixed layer temperature is made by heat exchange with the atmosphere (more than 50%) and horizontal advection, smoothing out changes in the mixed layer temperature – heating in the warm season, and cooling in the cold season. Intra-annual variability of salinity is controlled by ice melting in the warm season and horizontal advection in the cold season. The increase in salinity due to winter ice formation is significantly less than the freshening caused by summer ice melting. Stable positive trends of varying intensity are observed in the temperature and salinity of the mixed layer. These trends are associated with a gradual reduction in ice cover, which ensures an increase in the effectiveness of positive feedback on a seasonal scale, due to which the heating of the mixed layer by the end of the warm season exceeds the cooling in the subsequent cold season, and freshening in the warm season does not compensate for the salinization in the subsequent cold season.

About the authors

V. V Ivanov

M.V. Lomonosov Moscow State University; Arctic and Antarctic Research Institute

Email: vladimir.ivanov@aari.ru
Moscow; Saint-Petersburg

A. A Sumkina

Russian Federal Research Institute of Fisheries and Oceanography

Moscow

A. V Smirnov

Arctic and Antarctic Research Institute

Saint-Petersburg

K. K Kivva

Russian Federal Research Institute of Fisheries and Oceanography

Moscow

References

  1. Аксенов П.В., Иванов В.В. “Атлантификация” как вероятная причина сокращения площади морского льда в Бассейне Нансена в зимний сезон // Проблемы Арктики и Антарктики. 2018. Т. 64. № 1. С. 72–84.
  2. Гилл А. Динамика атмосферы и океана. Т. 1. М.: Наука, 1985. 355 с.
  3. Добровольский А.Л., Залоши Б.С. Моря СССР. М.: Издательство МГУ, 1982. 192 с.
  4. Доронин Ю.П., Хейсин Д.Е. Морской лед. Ленинград: Гидрометеоиздат, 1975. 317 с.
  5. Иванов В.В. Современные изменения гидрометеорологических условий в Северном Ледовитом океане, связанные с сокращением морского ледяного покрова // Гидрометеорология и экология. 2021. № 64. С. 403–434.
  6. Иванов В.В., Аксенов Е.О. Трансформация атлантической воды в восточной части котловины Нансена по данным наблюдений и моделирования // Проблемы Арктики и Антарктики. 2013. Т. 1. № 95. С. 72–87.
  7. Иванов В.В., Алексеев В.А., Алексеева Т.А. Арктический ледяной покров становится сезонным? // Исследование Земли из космоса. 2013. Т. 2013. № 4. С. 50–65.
  8. Sumkina A.A., Kivva K.K., Ivanov V.V. Seasonality of Heat Exchange on the Barents Sea Surface // Oceanology. 2023. №63(Suppl. 1). P. 65–71.
  9. Сумкина А.А., Кивва K.K., Иванов В.В. Сезонное очищение от лада Баренцева моря и его зависимость от адвокации тепла атлантическими водами // Фундаментальная и прикладная гидрофизика. 2022. Т. 15. № 1. С. 82–97.
  10. Суркова Г.В., Романенко В.А. Сезонные и многолетние изменения турбулентных потоков тепла между морем и атмосферой в западном секторе российской Арктики // Вестник Московского университета. Серия 5: география. 2021. № 4. С. 74–82.
  11. Årthun M., Eldevik T., Smedsrud L.H. Quantifying the influence of atlantic heat on Barents Sea ice variability and retreat // Journal of Climate. 2012. V. 25. № 13. P. 4736–4743.
  12. Årthun M., Onarheim I.H., Dörr J. The seasonal and regional transition to an ice-free Arctic // Geophysical Research Letters. 2021. V. 48. № 1. P. e2020GL090825.
  13. Asbjørnsen H., Årthun M., Skagseth Ø. Mechanisms underlying recent Arctic atlantification // Geophysical Research Letters. 2020. V. 47. № 15. P. e2020GL088036.
  14. Barton B.I., Lenn Y.D., Ligue C. Observed atlantification of the Barents Sea causes the Polar Front to limit the expansion of winter sea ice // Journal of Physical Oceanography. 2018. V. 48. № 8. P. 1849–1866.
  15. Cai Z., You Q., Chen H.W. Amplified wintertime Barents Sea warming linked to intensified Barents oscillation // Environmental Research Letters. 2022. V. 17. № 4. P. 044068.
  16. Comiso J.C. A rapidly declining perennial sea ice cover in the Arctic // Geophysical Research Letters. 2002. V. 29. № 20. P. 1–4.
  17. Comiso J.C., Parkinson C.L., Gersten R. Accelerated decline in the Arctic sea ice cover // Geophysical Research Letters. 2008. V. 35. № 1. P. 1–6.
  18. Couveard X., Dumas F., Garnier V. Mixed layer formation and restratification in presence of mesoscale and submesoscale turbulence // Ocean Modelling. 2015. V. 96. P. 243–253.
  19. Dörr J., Årthun M., Eldevik T. Expanding influence of Atlantic and Pacific Ocean heat transport on winter sea ice variability in a warming Arctic // Journal of Geophysical Research: Oceans. 2024. V. 129. № 2. P. e2023JC019900.
  20. European Union-Copernicus Marine Service. Global Ocean Physics Reanalysis. Mercator Ocean International, 2018.
  21. Hersbach H., Bell B., Berrisford P. The ERA5 global reanalysis // Quarterly Journal of the Royal Meteorological Society. 2020. V. 146. № 730. P. 1999–2049.
  22. Ivanov V., Alexeev V., Koldunov N.V. Arctic Ocean heat impact on regional ice decay: A suggested positive feedback // Journal of Physical Oceanography. 2016. V. 46. № 5. P. 1437–1456.
  23. Ivanov V.V., Alexeev V.A., Repina I. Tracing atlantic water signature in the Arctic sea ice cover east of Svalbard // Advances in Meteorology. 2012. Vol. 2012. P. 1–11.
  24. Ivanov V.V., Repina I.A. Mid-winter anomaly of sea ice in the Western Nansen Basin in 2010s // IOP Conference Series: Earth and Environmental Science. 2019. V. 231. № 1. P. 012024–012024.
  25. Ivanov V., Varentsov M., Matveeva T. Arctic sea ice decline in the 2010s: The increasing role of the ocean air heat exchange in the late summer // Atmosphere-Ocean. 2019. V. 10. № 4. P. 184–184.
  26. Kwok R. Outflow of Arctic Ocean sea ice into the Greenland and Parent Seas: 1979–2007 // Journal of Climate. 2009. V. 22. № 9. P. 2438–2457.
  27. Kwok R., Cunningham G.F., Wensnahan M. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008 // Journal of Geophysical Research. 2009. V. 114. № C7. P. 2003–2008.
  28. Lellouche J.-M., Greiner E., Le Galloudec O. Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12o high-resolution system // Ocean Science. 2018. V. 14. № 5. P. 1093–1126.
  29. Lind S., Ingvaldsen R.B., Furevik T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import // Nature Climate Change. 2018. V. 8. № 7. P. 634–639.
  30. Martin S., Cavalieri D.J. Contributions of the Siberian shelf polynyas to the Arctic Ocean intermediate and deep water // Journal of Geophysical Research. 1989. V. 94. № C9. P. 12725–12738.
  31. Maykut G.A. The surface heat and mass balance // The Geophysics of Sea Ice / ed. N. Untersteiner. Boston, MA: Springer US, 1986. P. 395–463.
  32. Moore G.W.K., Våge K., Renfrew I.A. Sea-ice retreat suggests re-organization of water mass transformation in the Nordic and Barents Seas // Nature Communications. 2022. V. 13. № 1. P. 1–8.
  33. Nghiem S.V., Rigor I.G., Perovich D.K. Rapid reduction of Arctic perennial sea ice // Geophysical Research Letters. 2007. V. 34. № 19. P. 200761031138.
  34. Onarheim I.H., Årthun M. Toward an ice-free Barents Sea // Geophysical Research Letters. 2017. V. 44. № 16. P. 8387–8395.
  35. Onarheim I.H., Eldevik T., Årthun M. Skillful prediction of Barents Sea ice cover // Geophysical Research Letters. 2015. V. 42. № 13. P. 5364–5371.
  36. Polyakov I.V., Alexeev V.A., Ashik I.M. Fate of early 2000s arctic warm water pulse // Bulletin of the American Meteorological Society. 2011. V. 92. № 5. P. 561–566.
  37. Polyakov I.V., Beszczynska A., Carmack E.C. One more step toward a warmer Arctic // Geophysical Research Letters. 2005. V. 32. № 17. P. L17605.
  38. Polyakov I.V., Pnyushkov A.V., Alkire M.B. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean // Science. 2017. V. 356. № 6335. P. 285–291.
  39. Renner A.H.H., Sundfjord A., Janout M.A. Variability and redistribution of heat in the Atlantic Water boundary current north of Svalbard // Journal of Geophysical Research: Oceans. 2018. V. 123. № 9. P. 6373–6391.
  40. Schlichtholz P. Subsurface ocean flywheel of coupled climate variability in the Barents Sea hotspot of global warming // Scientific Reports. 2019. V. 9. № 1. P. 13692–13692.
  41. Shapiro G.I., Huthnance J.M., Ivanov V.V. Dense water cascading off the continental shelf // Journal of Geophysical Research. 2003. V. 108. № C12. P. 1–19.
  42. Skagseth Ø., Eldevik T., Årthun M. Reduced efficiency of the Barents Sea cooling machine // Nature Climate Change. 2020. V. 10. № 7. P. 661–666.
  43. Skagseth Ø., Furevik T., Ingvaldsen R. Volume and heat transports to the Arctic Ocean via the Norwegian and Barents Seas // Arctic-Subarctic Ocean Fluxes. Dordrecht, Netherlands: Springer, 2008. P. 45–64.
  44. Sumkina A.A., Kivva K.K., Ivanov V.V. Seasonality of heat exchange on the Barents Sea surface // Oceanology. 2023. V. 63. № S1. P. S65–S71.
  45. Tuan Pham D., Verron J., Christine Roubaud M. A singular evolutive extended Kalman filter for data assimilation in oceanography // Journal of Marine Systems. 1998. V. 16. № 3–4. P. 323–340.
  46. Wang Q., Wang X., Wekerle C. Ocean heat transport into the Barents Sea: distinct controls on the upward trend and interannual variability // Geophysical Research Letters. 2019. V. 46. № 22. P. 13180–13190.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).