Currents and Tides in the Fram Strait and Greenland Sea

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Measurements of oceanographic characteristics, currents, and tides in the Fram Strait and the Greenland Sea are analyzed using historical measurement data. Measurements on moorings across the Fram Strait made it possible to estimate the speeds of the East Greenland and West Spitsbergen currents. It is shown that the speeds of these currents are low (within 10 cm/s) and the amplitudes of the speed of tidal currents are two or more times greater. Tidal currents are intensifying on the shelf of Greenland and Spitsbergen. Direct measurements are compared with the University of Oregon barotropic tide model.

全文:

受限制的访问

作者简介

E. Morozov

Shirshov Institute of Oceanology; Moscow Institute of Physics and Technology; Marine Hydrophysical Institute

编辑信件的主要联系方式.
Email: egmorozov@mail.ru
俄罗斯联邦, Moscow; Dolgoprudny, Mosсow region; Sevastopol

D. Frey

Shirshov Institute of Oceanology; Moscow Institute of Physics and Technology; Marine Hydrophysical Institute

Email: egmorozov@mail.ru
俄罗斯联邦, Moscow; Dolgoprudny, Mosсow region; Sevastopol

参考

  1. Морозов Е.Г., Писарев С.В. Внутренний прилив в арктических широтах (численные эксперименты) // Океанология. 2002. T. 42. № 2. С. 165–173.
  2. Морозов Е.Г., Фрей Д.И., Гладышев С.В., Гладышев В.С. Гидродинамика потока донных вод из Арктики в Атлантику в Датском проливе // Изв. РАН Сер. ФАО. 2020. T. 56. № 5. С. 551–560. https://doi.org/10.31857/S0002351520050090
  3. Смирнов А.В., Иванов В.В., Соколов А.А. Сравнительный анализ тепломассопереносов, рассчитанных по инструментальным измерениям и продуктам океанского реанализа в проливе Фрама // Морской гидрофизический журнал. 2024. Том 40 № 3. С. 402–425.
  4. von Appen W.-J., Schauer U., Hattermann T., Beszczynska-Möller A. Seasonal cycle of mesoscale instability of the West Spitsbergen Current // J. Phys. Oceanogr. 2016. V. 46(4). P. 1231–1254. https://doi.org/10.1175/JPO-D-15–0184.1
  5. Arctic–Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate, Eds: R.R. Dickson, J. Meincke, P. Rhines. Springer, Dordrecht, 2008. 432 p.
  6. Beszczynska-Möller A., Fahrbach E., Schauer U., Hansen E. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010 // ICES J. Mar. Sci. 2012. V. 69. № 5. P. 852–863. https://doi.org/10.1093/icesjms/fss056
  7. Cokelet E.D., Tervalon N., Bellingham J.G. Hydrography of the West Spitsbergen Current, Svalbard branch: autumn 2001 // J. Geophys. Res.: Oceans. 2008. V. 113. C01006. https://doi.org/10.1029/2007JC00415
  8. Daniault N., Mercier H., Lherminier P., et al. The northern North Atlantic Ocean mean circulation in the early 21st century // Progress in Oceanography. 2016. V. 146. P. 142–158.
  9. Egbert G.D., Erofeeva S. Efficient inverse modeling of barotropic ocean tides // J. Atmos. Ocean Tech. 2002. V. 19. P. 183–204. https://doi.org/10.1175/1520-0426(2002)019<0183: EIMOBO>2.0.CO;2
  10. Fahrbach E., Meincke J., Østerhus S., et al. Direct measurements of volume transports through Fram Strait // Polar Res. 2001. V. 20. № 2. P. 217–224. https://doi.org/10.1111/j.1751-8369.2001.tb00059.x
  11. Fahrbach E., Rohardt G., Schauer U. Physical oceanography and current meter data from mooring F1–1 – F1–14. AWI, Helmholtz Centre for Polar and Marine Research, Bremerhaven. 2012 PANGAEA. https://doi.org/10.1594/PANGAEA.800280, https://doi.org/10.1594/PANGAEA.800324, https://doi.org/10.1594/PANGAEA.800338, https://doi.org/10.1594/PANGAEA.800349, https://doi.org/10.1594/PANGAEA.800362, https://doi.org/10.1594/PANGAEA.800375, https://doi.org/10.1594/PANGAEA.800388, https://doi.org/10.1594/PANGAEA.800398, https://doi.org/10.1594/PANGAEA.800408, https://doi.org/10.1594/PANGAEA.800290, https://doi.org/10.1594/PANGAEA.800424, https://doi.org/10.1594/PANGAEA.800304, https://doi.org/10.1594/PANGAEA.800307
  12. Fieg K., Gerdes R., Fahrbach E., et al. Simulation of oceanic volume transports through Fram Strait 1995–2005 // Ocean Dyn. 2010. V. 60(3). P. 491–502.
  13. Foldvik A., Aagaard K., Tørresen T. On the velocity field of the East Greenland Current // Deep-Sea Res. I. 1988. V. 35(8). P. 1335–1354.
  14. Hattermann T., Isachsen P.E., von Appen W.J., et al. Eddy-driven recirculation of Atlantic Water in Fram Strait // Geophys. Res. Lett. 2016. V. 43. P. 3406–3414. https://doi.org/10.1002/2016GL068323
  15. Kurkina O.E., Talipova T.G. Huge internal waves in the vicinity of the Spitsbergen Island (Barents Sea) // Natural Hazards Earth System Studies. 2011. V. 11. P. 981–986. https://doi.org/10.5194/nhess-11-981-2011.
  16. Mauritzen C. Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge. Part 1: Evidence for a revised circulation scheme // Deep Sea Res. Part I. 1996. V. 43 (6). P. 769–806. https://doi.org/10.1016/0967-0637(96)00037-4
  17. Schauer U., Fahrbach E., Osterhus S., Rohardt G. Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements // J. Geophys. Res.: Oceans. 2004. V. 109. C06026. https://doi.org/10.1029/2003JC001823.
  18. Seager R., Battisti D.S., Yin J.H., et al. Is the Gulf Stream responsible for Europe’s mild winters? // Quarterly J. Royal Met. Society. 2002. V. 128(586). P. 2563–2586. https://doi.org/10.1256/qj.01.128
  19. de Steur L., Hansen E., Mauritzen C., et al. Impact of recirculation on the East Greenland Current in Fram Strait: Results from moored current meter measurements between 1997 and 2009 // Deep-Sea Res. Part I. 2014. V. 92. P. 26–40. https://doi.org/10.1016/j.dsr.2014.05.018
  20. Woodgate R.A., Fahrbach E., Rohardt G. Structure and transports of the East Greenland Current at 75°N from moored current meters // J. Geophys. Res.: Oceans. 1999. V. 104 (C8). P. 18059–18072. https://doi.org/10.1029/1999JC900146
  21. Yulmetov R., Marchenko A., Loset S. Iceberg and sea ice drift tracking and analysis off north-east Greenland // Ocean Engineering. 2016. V. 123. P. 223–237.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Diagram of currents in the Greenland Sea [6, 12]. The red line shows the Norwegian Current and its continuation – the West Spitsbergen Current. The blue line – the East Greenland Current. The yellow dots show the positions of 13 buoys in 1997–1998. The green dots – the positions of buoys in 1987–1989.

下载 (1MB)
3. Fig. 2. Potential temperature and salinity sections along 79° N based on data from a section made in the summer of 1998. White vertical lines show the positions of the soundings.

下载 (924KB)
4. Fig. 3. Potential temperature and salinity sections along 75° N based on data from a section made in the summer of 1998. White lines show the positions of the soundings.

下载 (953KB)
5. Fig. 4. Geostrophic currents based on absolute dynamic topography of the Fram Strait region using satellite altimetry for the period 1993–2020 and for March 1998. Black dots indicate the locations of buoys.

下载 (2MB)
6. Fig. 5. Section of average meridional current velocities for 1997–1998 at 78°50ʹ N

下载 (357KB)
7. Fig. 6. Section of average meridional current velocities for 1997–1998 along 75°30ʹ N.

下载 (352KB)
8. Fig. 7. Map of the current vectors of the upper layer (0–300 m) and the corresponding water temperature values ​​based on measurements on buoys.

下载 (599KB)
9. Fig. 8. Average monthly (black dots and line) and average daily (gray line) values ​​of meridional current velocity based on measurements on buoy F3 (horizon 1040 m).

下载 (230KB)
10. Fig. 9. Tidal current spectra (meridional component) at point F7 at horizons of 60 (black), 280 (red), 1430 (blue) and 2299 m (green) based on a series of measurements in 1997–1998. The scales are logarithmic so that the spectral graphs do not merge.

下载 (470KB)
11. Fig. 10. Spectra of tidal currents (meridional component) at point F1 at horizons of 80 and 280 m based on a series of measurements in 1997–1998.

下载 (101KB)
12. Fig. 11. Current velocity spectra (meridional component) at points F1, F7, F13 at depths of 260–280 m according to measurement series in 1997–1998.

下载 (142KB)
13. Fig. 12. Variability of spectral densities of velocity components U (lower curve) and V (upper curve) horizontally along the section at horizons of 200–300 m at tidal frequency M2.

下载 (113KB)
14. Fig. 13. Tidal ellipses (velocity hodographs) based on measurements on buoys F7 (260 m) and F1 (280 m) for March 13–14 and March 20–21, 1998 (upper row). The full moon is on March 13, and the first quarter of the moon is on March 20. The lower row of the figure shows ellipses based on data from the TPXO9 model [9].

下载 (587KB)
15. Fig. 14. Spectrum for a number of amplitudes of tidal currents of component V on buoy F7, horizon 280 m.

下载 (90KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».