Involvement of the Gagr Gene, a Domesticated gag Gene of Retrovirus, in the Stress Response Pathway in Different Drosophila Species

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Gagr gene is a domesticated gag retroelement gene in Drosophila melanogaster, whose function is associated with a stress response. The protein products of the Gagr gene and its homologues in different Drosophila species have a highly conserved structure; however, they demonstrate a certain variability in the promoter region of the gene, apparently associated with the gradual acquisition of a new function and involvement in new signaling pathways. In this work we studied the effect of oxidative stress caused by ammonium persulfate on the survival of various species of the genus Drosophila (D. melanogaster, D. mauritiana, D. simulans, D. yakuba, D. teissieri, D. pseudoobscura), analyzed the correlation between the structure of promoter regions and stress-induced changes in the expression of the Gagr gene and its homologues in different Drosophila species and comparison of stress-induced changes in the expression of oxidative stress markers: Jak-STAT signaling pathway activator gene upd3, Jak-STAT pathway effector vir-1, and signaling pathway target IMD Rel. It was found that in D. simulans and D. mauritiana sensitivity to ammonium persulfate is significantly increased, which correlates with a reduced level of transcription of vir-1 gene orthologues. The latter is due to a decrease in the number of binding sites for the transcription factor STAT92E, a component of the Jak-STAT signaling pathway, in the vir-1 promoter region. Consistent changes in the expression of the Gagr, upd3, vir-1 genes are observed in all species of the melanogaster subgroup, except D. pseudoobscura, which indicates an increase in the role of Gagr in the regulation of stress response pathways during the phylogenesis of the genus Drosophila.

About the authors

A. N. Gigin

Department of Biology, Lomonosov Moscow State University

Email: nefedova@mail.bio.msu.ru
Russia, 119234, Moscow

L. N. Nefedova

Department of Biology, Lomonosov Moscow State University

Author for correspondence.
Email: nefedova@mail.bio.msu.ru
Russia, 119234, Moscow

References

  1. Dupressoir A., Marceau G., Vernochet C., Benit L., Kanellopoulos C., Sapin V., Heidmann T. (2005) Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proc. Natl. Acad. Sci. USA. 102(3), 725‒730.
  2. Emera D., Wagner G.P. (2012) Transposable element recruitments in the mammalian placenta: impacts and mechanisms. Brief. Funct. Genomics. 11(4), 267‒276.
  3. Henke C., Strissel P.L., Schubert M.-T., Mitchell M., Stolt C.C., Faschingbauer F., Beckmann M.W., Strick R. (2015) Selective expression of sense and antisense transcripts of the Sushi-ichirelated retrotransposon-derived family during mouse placentogenesis. Retrovirology. 12, 9.
  4. Kämmerer U., Germeyer A., Stengel S., Kapp M., Denner J. (2011) Human endogenous retrovirus K (HERV-K) is expressed in villous and extravillous cytotrophoblast cells of the human placenta. J. Reprod. Immunol. 91(1–2), 1‒8.
  5. Mallet F., Bouton O., Prudhomme S., Cheynet V., Oriol G., Bonnaud B., Lucotte G., Duret L., Mandrand B. (2004) The endogenous retroviral locus ERV-WE1 is a bona fide gene involved in hominoid placental physiology. Proc. Natl. Acad. Sci. USA. 101(6), 1731‒1736.
  6. Cho G., Lim Y., Golden J.A. (2011) XLMR candidate mouse gene, Zcchc12 (Sizn1) is a novel marker of Cajal–Retzius cells. Gene Exp. Patterns. 11, 216–220.
  7. Navas-Pérez E., Vicente-García C., Mirra S., Burguera D., Fernàndez-Castillo N., Ferrán J.L., López-Mayorga M., Alaiz-Noya M., Suárez-Pereira I., Antón-Galindo E., Ulloa F., Herrera-Úbeda C., Cuscó P., Falcón-Moya R., Rodríguez-Moreno A., D’Aniello S., Cormand B., Marfany G., Soriano E., Carrión Á.M., Carvajal J.J., Garcia-Fernàndez J. (2020) Characterization of an eutherian gene cluster generated after transposon domestication identifies Bex3 as relevant for advanced neurological functions. Genome Biol. 21, 267.
  8. Benit L., Parseval N. De, Casella J.F., Callebaut I., Cordonnier A., Heidmann T. (1997) Cloning of a new murine endogenous retrovirus, MuERV-L, with strong similarity to the human HERV-L element and with a gag coding sequence closely related to the Fv1 restriction gene. J. Virol. 71(7), 5652‒5657.
  9. Kaneko-Ishino T., Ishino F. (2012) The role of genes domesticated from LTR retrotransposons and retroviruses in mammals. Front. Microbiol. 3, 262.
  10. Yap M.W., Colbeck E., Ellis S.A., Stoye J.P. (2014) Evolution of the retroviral restriction gene Fv1: inhibition of non-MLV retroviruses. PLoS Pathogens. 10(3), e1003968.
  11. Hantak M.P., Einstein J., Kearns R.B., Shepherd J.D. (2021) Intercellular communication in the nervous system goes viral. Trends Neurosci. 44(4), 248–259.
  12. Schrader L., Schmitz J. (2019) The impact of transposable elements in adaptive evolution. Mol. Ecology. 28, 1537–1549.
  13. Chen W., Schwalie P.C., Pankevich E.V., Gubelmann C., Raghav S.K., Dainese R., Cassano M., Imbeault M., Jang S.M., Russeil J., Delessa T., Duc J., Trono D., Wolfrum C., Deplancke B. (2019) ZFP30 promotes adipogenesis through the KAP1-mediated activation of a retrotransposon-derived Pparg2 enhancer. Nat. Commun. 10(1), 1809.
  14. Deng B., Xu W., Wang Z., Liu C., Lin P., Li B., Huang Q., Yang J., Zhou H., Qu L. (2019) An LTR retrotransposon-derived lncRNA interacts with RNF169 to promote homologous recombination. EMBO Rep. 20(11), e47650.
  15. Nefedova L., Kim A. (2017) Mechanisms of LTR-retroelement transposition: lessons from Drosophila melanogaster. Viruses. 9(4), 81.
  16. Malik H.S., Henikoff S. (2005) Positive selection of Iris, a retroviral envelope-derived host gene in Drosophila melanogaster. PLoS Genet. 1(4), e44.
  17. Nefedova L.N., Kuzmin I. V, Makhnovskii P.A., Kim A.I. (2014) Domesticated retroviral GAG gene in Drosophila: new functions for an old gene. Virology. 450–451, 196.
  18. Makhnovskii P., Balakireva Y., Nefedova L., Lavrenov A., Kuzmin I., Kim A. (2020) Domesticated gag gene of Drosophila LTR retrotransposons is involved in response to oxidative stress. Genes. 11(4), 396.
  19. Dostert C., Jouanguy E., Irving P., Troxler L., Galiana-Arnoux D., Hetru C., Hoffmann J.A., Imler J.-L. (2005) The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila. Nat. Immunol. 6(9), 946‒953.
  20. Gruenewald C., Botella J.A., Bayersdorfer F., Navarro J.A., Schneuwly S. (2009) Hyperoxia-induced neurodegeneration as a tool to identify neuroprotective genes in Drosophila melanogaster. Free Rad. Biol. Med. 46(12), 1668‒1676.
  21. Wright V.M., Vogt K.L., Smythe E., Zeidler M.P. (2011) Differential activities of the Drosophila JAK/STAT pathway ligands Upd, Upd2 and Upd3. Cell. Signal. 23(5), 920‒927.
  22. Santabarbara-Ruiz P., Lopez-Santillan M., Martinez-Rodriguez I., Binagui-Casas A., Perez L., Milan M., Corominas M., Serras F. (2015) ROS-Induced JNK and p38 signaling is required for unpaired cytokine activation during Drosophila regeneration. PLoS Genet. 11(10), e1005595.
  23. Staley B.K., Irvine K.D. (2010) Warts and Yorkie mediate intestinal regeneration by influencing stem cell proliferation. Curr. Biol. 20(17), 1580–1587.
  24. Biteau B., Karpac J., Hwangbo D., Jasper H. (2011) Regulation of Drosophila lifespan by JNK signaling. Exp. Gerontol. 46(5), 349‒354.
  25. Ermolaeva M.A., Schumacher B. (2014) Systemic DNA damage responses: organismal adaptations to genome instability. Trends Genet. 30(3), 95‒102.
  26. Myllymäki H., Valanne S., Rämet M. (2014) The Drosophila Imd signaling pathway. J. Immunol. 192, 3455‒3462.
  27. Jakob H., Leininger S., Lehmann T., Jacobi S., Gutewort S. (2007) Peroxo compounds, inorganic. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH. https://doi.org/https://doi.org/10.1002/14356007.a19_177.pub2
  28. Belozerov V.E., Lin Z.-Y., Gingras A.-C., McDermott J.C., Michael Siu K.W. (2012) High resolution protein interaction map of the Drosophila melanogaster p38 mitogen-activated protein kinases reveals limited functional redundancy. Mol. Cell. Biol. 32(18), 3695‒3706.
  29. Brun S., Vidal S., Spellman P., Takahashi K., Tricoire H., Lemaitre B. (2006) The MAPKKK Mekk1 regulates the expression of Turandot stress genes in response to septic injury in Drosophila. Genes Cells. 11, 397‒407.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (268KB)
3.

Download (123KB)
4.

Download (231KB)
5.

Download (307KB)

Copyright (c) 2023 А.Н. Гигин, Л.Н. Нефедова

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».