Serine Variant of the Reductive Glycine Pathway of CO2 Fixation in the Anaerobic Thermophile Parvivirga hydrogeniphila
- 作者: Chernykh N.A.1, Rusanov I.I.1, Pikhtereva V.A.1
-
隶属关系:
- S.N. Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences
- 期: 卷 94, 编号 6 (2025)
- 页面: 565–572
- 栏目: EXPERIMENTAL ARTICLES
- URL: https://ogarev-online.ru/0026-3656/article/view/358314
- DOI: https://doi.org/10.7868/S3034546425060069
- ID: 358314
如何引用文章
详细
作者简介
N. Chernykh
S.N. Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences
Email: chernyh3@yandex.com
Moscow, Russia
I. Rusanov
S.N. Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of SciencesMoscow, Russia
V. Pikhtereva
S.N. Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of SciencesMoscow, Russia
参考
- Aziz R.K., Bartels D., Best A.A., DeJongh M., Disz T., Edwards R.A., Formsma K., Gerdes S., Glass E.M., Kubal M. The RAST Server: Rapid Annotations using Subsystems Technology // BMC Genomics. 2008. V. 9. Art. 75. https://doi.org/10.1186/1471-2164-9-75
- Berg I.A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways // Appl. Environ. Microbiol. 2011. V. 77. P. 1925–1936. https://doi.org/10.1128/aem.02473-10
- Bruinsma L., Wenk S., Claassens N.J., Martins Dos Santos V.A.P. Paving the way for synthetic C1-metabolism in Pseudomonas putida through the reductive glycine pathway // Metab. Eng. 2023. V. 76. P. 215–224. https://doi.org/10.1016/j.ymben.2023.02.004
- Claassens N.J., Satanowski A., Bysani V.R., Dronsella B., Orsi E., Rainaldi V., Yilmaz S., Wenk S., Lindner S.N. Engineering the reductive glycine pathway: a promising synthetic metabolism approach for C1-assimilation // Adv. Biochem. Eng. Biotechnol. 2022. V. 180. P. 299–350. https://doi.org/10.1007/10_2021_181
- Cox J., Neuhauser N., Michalski A., Scheltema R.A., Olsen J.V., Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment // J. Proteome Res. 2011. V. 10. P. 1794–1805. https://doi.org/10.1021/pr101065j
- Kevbrin V.V., Zavarzin G.A. The influence of sulfur compounds on the growth of halophilic homoacetic bacterium Acetohalobium arabaticum // Microbiology (Moscow). 1992. V. 61. P. 563–571.
- Khomyakova M.A., Zavarzina D.G., Merkel A.Y., Klyukina A.A., Pikhtereva V.A., Gavrilov S.N., Slobodkin A.I. The first cultivated representatives of the actinobacterial lineage OPB41 isolated from subsurface environments constitute a novel order Anaerosomatales // Front. Microbiol. 2022. V. 13. Art. 1047580. https://doi.org/10.3389/fmicb.2022.1047580
- Kulak N.A., Pichler G., Paron I., Nagaraj N., Mann M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells // Nat. Methods. 2014. V. 11. P. 319–324. https://doi.org/10.1038/nmeth.2834
- Mall A., Sobotta J., Huber C., Tschirner C., Kowarschik S., Bačnik K., Mergelsberg M., Boll M., Hügler M., Eisenreich W., Berg I.A. Reversibility of citrate synthase allows autotrophic growth of a thermophilic bacterium // Science. 2018. V. 359. P. 563–567. https://doi.org/10.1126/science. aao2410
- Sánchez-Andrea I., Guedes I.A., Hornung B., Boeren S., Lawson C.E., Sousa D.Z., Bar-Even A., Claassens N.J., Stams A.J.M. The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans // Nat. Commun. 2020. V. 11. Art. 5090. https://doi.org/10.1038/s41467-020-18906-7
- Sorokin D.Y., Messina E., La Cono V., Ferrer M., Ciordia S., Mena M.C., Toshchakov S.V., Golyshin P.N., Yakimov M.M. Sulfur respiration in a group of facultatively anaerobic natronoarchaea ubiquitous in hypersaline soda lakes // Front. Microbiol. 2018. V. 9. Art. 2359. https://doi.org/10.3389/fmicb.2018.02359
- Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics // Nat. Protoc. 2016. V. 11. P. 2301–2319. https://doi.org/10.1038/nprot.2016.136
- Wolin E.A., Wolin M.J., Wolfe R.S. Methane formation by bacterial extracts // J. Biol. Chem. 1963. V. 238. P. 2882–2888.
补充文件

