Analysis of Biofilms Formed by Bacteria of the Genus Azospirillum in Soil

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Strains A. baldaniorum Sp245 and A. brasilense Sp7 formed mono- and multilayer biofilms on the surface of wheat roots both under sterile hydroponic conditions and in non-sterile soil. Derivatives of these strains carrying a plasmid with the gene of the fluorescent protein GFP were used to visualize bacterial biofilms in situ. Azospirillum biofilms/their matrix components bound to soil particles, forming aggregates in the soil, which affected not only its structure, but also the adhesion of the soil to plant roots. Under short-term drought conditions, bacteria in biofilms formed on the surface of the root epidermis and root hairs produced GFP in the root system of plants inoculated with Azospirillum. Sowings from the roots of these plants showed that GFP+ colonies are Azospirillum. Inoculation with strains Sp7 and Sp245 positively affected the relative water content in the leaves of plants exposed to conditions simulating short-term drought in the soil.

Негізгі сөздер

Авторлар туралы

A. Shirokov

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of Sciences

Saratov, Russia

D. Mokeev

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of Sciences

Saratov, Russia

I. Volokhina

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of Sciences

Saratov, Russia

S. Yevstigneeva

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of Sciences; Saratov State Medical University named after V.I. Razumovsky, Ministry of Health of the Russian Federation

Saratov, Russia; Saratov, Russia

I. Borisov

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of Sciences

Saratov, Russia

Yu. Filip’echeva

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of Sciences

Saratov, Russia

L. Matora

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of Sciences

Saratov, Russia

A. Muratova

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of Sciences

Saratov, Russia

L. Petrova

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of Sciences

Email: petrova_lp@mail.ru
Saratov, Russia

A. Shelud’ko

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of Sciences

Email: shel71@yandex.ru
Saratov, Russia

Әдебиет тізімі

  1. Баймиев Ан.Х., Ямиданов Р.С., Матниязов Р.Т., Благова Д.К., Баймиев Ал.Х., Чемерис А.В. Получение флуоресцентно меченых штаммов клубеньковых бактерий дикорастущих бобовых для их детекции in vivo и in vitro // Мол. биология. 2011. Т. 45. С. 984–991.
  2. Baymiev A.K., Yamidanov R.S., Matniyazov R.T., Blagova D.K., Baymiev Al.K., Chemeris A.V. Preparation of fluorescent labeled nodule bacteria strains of wild legumes for their detection in vivo and in vitro // Mol. Biol. 2011. V. 45. P. 904–910. https://doi.org/10.1134/S0026893311060033
  3. Евстигнеева С.С., Сигида Е.Н., Федоненко Ю.П., Коннова С.А., Игнатов В.В. Структурные особенности капсульных и О-полисахаридов бактерий Azospirillum brasilense Sp245 при изменении условий культивирования // Микробиология. 2016. Т. 85. С. 643‒651.
  4. Yevstigneyeva S.S., Sigida E.N., Fedonenko Y.P., Ignatov V.V., Konnova S.A. Structural properties of capsular and O-specific polysaccharides of Azospirillum brasilense Sp245 under varying cultivation conditions // Microbiology (Moscow). 2016. V. 85. P. 664–671. https://doi.org/10.1134/S0026261716060096
  5. Качинский Н.А. Механический и микроагрегатный состав почвы, методы его изучения. М.: Изд-во Академии наук СССР, 1958. 192 с.
  6. Матора Л.Ю., Шварцбурд Б.И., Щеголев С.Ю. Иммунохимический анализ О-специфических полисахаридов почвенных азотфиксирующих бактерий Azospirillum brasilense // Микробиология. 1998. Т. 67. С. 815–820.
  7. Matora L.Yu., Shvartsburd B.I., Shchegolev S.Yu. Immunochemical analysis of O-specific polysaccharides from the soil nitrogen-fixing bacterium Azospirillum brasilense // Microbiology (Moscow). 1998. V. 67. P. 677–681.
  8. Мокеев Д.И., Волохина И.В., Телешева Е.М., Евстигнеева С.С., Гринев В.С., Пылаев Т.Е., Петрова Л.П., Шелудько А.В. Анализ устойчивости к осмотическому стрессу биопленок почвенных бактерий Azospirillum brasilense // Микробиология. 2022. Т. 91. С. 695–707. https://doi.org/10.31857/S0026365622800230
  9. Mokeev D.I., Volokhina I.V., Telesheva E.M., Evstigneeva S.S., Grinev V.S., Pylaev T.E., Petrova L.P., Shelud’ko A.V. Resistance of biofilms formed by the soil bacterium Azospirillum brasilense to osmotic stress // Microbiology (Moscow). 2022. V. 91. P. 682–692. https://doi.org/10.1134/S0026261722601567
  10. Шелудько А.В., Филипьечева Ю.А., Телешева Е.М., Буров А.М., Евстигнеева С.С., Бурыгин Г.Л., Петрова Л.П. Характеристика углеводсодержащих компонентов биопленок Azospirillum brasilense Sp245 // Микробиология. 2018. Т. 87. C. 483–494.
  11. Shelud’ko A.V., Filip’echeva Y.A., Telesheva E.M., Burov A.M., Evstigneeva S.S., Burygin G.L., Petrova L.P. Characterization of carbohydrate-containing components of Azospirillum brasilense Sp245 biofilms // Microbiology (Moscow). 2018. V. 87. P. 610–620. https://doi.org/10.1134/S0026261718050156
  12. Шелудько А.В., Мокеев Д.И., Евстигнеева С.С., Филипьечева Ю.А., Буров А.М., Петрова Л.П., Пономарева Е.Г., Кацы Е.И. Анализ ультраструктуры клеток в составе биопленок бактерий Azospirillum brasilense // Микробиология. 2020. Т. 89. С. 59–73. https://doi.org/10.1134/S0026365620010140
  13. Shelud’ko A.V., Mokeev D.I., Evstigneeva S.S., Filip’echeva Yu.A., Burov A.M., Petrova L.P., Ponomareva E.G., Katsy E.I. Cell ultrastructure in biofilms of Azospirillum brasilense // Microbiology. 2020. V. 89. P. 50–63. https://doi.org/10.1134/S0026261720010142
  14. Ashraf A., Bano A., Ali S.A. Characterization of plant growth-promoting rhizobacteria from rhizosphere soil of heat-stressed and unstressed wheat and their use as bio-inoculant // Plant Biol. (Stuttg.). 2019. V. 21. P. 762–769. https://doi.org/ 10.1111/plb.12972
  15. Cámara M., Green W., MacPhee C.E., Rakowska P.D., Raval R., Richardson M.C., Slater-Jefferies J., Steventon K., Webb J.S. Economic significance of biofilms: a multidisciplinary and cross-sectoral challenge // Biofilms Microbiomes. 2022. V. 8. P. 42. https://doi.org/ 10.1038/s41522-022-00306-y
  16. Cortés-Patiño S., Vargas C., Álvarez-Flórez F., Bonilla R., Estrada-Bonilla G. Potential of Herbaspirillum and Azospirillum consortium to promote growth of perennial ryegrass under water // Microorganisms. 2021. V. 9. Art. 91. https://doi.org/10.3390/microorganisms9010091
  17. Del Gallo M., Haegi A. Characterization and quantification of exocellular polysaccharides in Azospirillum brasilense and Azospirillum lipoferum // Symbiosis. 1990. V. 9. P. 155–161.
  18. Döbereiner J., Day J.M. Associative symbiosis in tropical grass: characterization of microorganisms and dinitrogen fixing sites // Symposium on Nitrogen Fixation / Eds. Newton W.E., Nijmans C.J. Pullman: Washington State University Press, 1976. P. 518–538.
  19. Fukami J., Cerezini P., Hungria M. Azospirillum: benefits that go far beyond biological nitrogen fixation // AMB Expr. 2018. V. 8. P. 73–85. https://doi.org/10.1186/s13568-018-0608-1
  20. Haldar S., Sengupta S. Plant-microbe cross-talk in the rhizosphere: insight and biotechnological potential // Open Microbiol. J. 2015. V. 9. P. 1–7. https://doi.org/10.2174/1874285801509010001
  21. Hemdan B.A., El-Taweel G.E., Goswami P., Pant D., Sevda S. The role of biofilm in the development and dissemination of ubiquitous pathogens in drinking water distribution systems: an overview of surveillance, outbreaks, and prevention // World J. Microbiol. Biotechnol. 2021. V. 37. Art. 36. https://doi.org/10.1007/s11274-021-03008-3
  22. Hendriksen N.B. Microbial biostimulants – the need for clarification in EU regulation // Trends Microbiol. 2022. V. 30. P. 311‒313. https://doi.org/10.1016/j.tim.2022.01.008
  23. Kaci Y., Heyraud A., Barakat M., Heulin T. Isolation and identification of an EPS-producing Rhizobium strain from arid soil (Algeria): characterization of its EPS and the effect of inoculation on wheat rhizosphere soil structure // Res. Microbiol. 2005. V. 156. P. 522–531. https://doi.org/10.1016/j.resmic.2005.01.012
  24. Lipa P., Janczarek M. Phosphorylation systems in symbiotic nitrogen-fixing bacteria and their role in bacterial adaptation to various environmental stresses // Peer J. 2020. V. 8. Art. e8466. https://doi.org/10.7717/peerj.8466
  25. O’Toole G.A., Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis // Mol. Microbiol. 1998. V. 28. P. 449–461.
  26. Philippot L., Chenu C., Kappler A., Rillig M., Fierer N. The interplay between microbial communities and soil properties // Nat. Rev. Microbiol. 2024. V. 22. P. 226–239. https://doi.org/10.1038/s41579-023-00980-5
  27. Ramírez-Mata A., López-Lara L.I., Xiqui-Vázquez M.L., Jijón-Moreno S., Romero-Osorio A., Baca B.E. The cyclic-di-GMP diguanylate cyclase CdgA has a role in biofilm formation and exopolysaccharide production in Azospirillum brasilense // Res. Microbiol. 2016. V. 167. P. 190–201. https://doi.org/10.1016/j.resmic.2015.12.004
  28. Rostamian A., Moaveni P., Sadeghi-Shoae M., Mozafari H., Rajabzadeh F. Effective drought mitigation by rhizobacteria consortium in wheat field trials // Rhizosphere. 2023. V. 25. Art. 100653. https://doi.org/10.1016/j.rhisph.2022.100653
  29. Schloter M., Hartmann A. Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain-specific monoclonal antibodies // Symbiosis. 1998. V. 25. P. 159–179.
  30. Shelud’ko A.V., Filip’echeva Y.A., Telesheva E.M., Yevstigneeva S.S., Petrova L.P., Katsy E.I. Polar flagellum of the alphaproteobacterium Azospirillum brasilense Sp245 plays a role in biofilm biomass accumulation and in biofilm maintenance under stationary and dynamic conditions // World J. Microbiol. Biotechnol. 2019. V. 35. Art. 19. https://doi.org/10.1007/s11274-019-2594-0
  31. Shelud’ko A., Volokhina I., Mokeev D., Telesheva E., Yevstigneeva S., Burov A., Tugarova A., Shirokov A., Burigin G., Matora L., Petrova L. Chromosomal gene of hybrid multisensor histidine kinase is involved in motility regulation in the rhizobacterium Azospirillum baldaniorum Sp245 under mechanical and water stress // World J. Microbiol. Biotechnol. 2023. V. 39. Art. 336. https://doi.org/10.1007/s11274-023-03785-z
  32. Shelud’ko A., Volokhina I., Mokeev D., Telesheva E., Filip’Echeva Y., Burov A., Borisov I., Shirokov A., Matora L., Petrova L. Multilevel analysis of biofilms of Azospirillum bacteria colonizing wheat roots under different water supply conditions // Rhizosphere. 2025. V. 33. Art. 101029. https://doi.org/10.1016/j.rhisph.2025.101029
  33. Shime-Hattori A., Kobayashi S., Ikeda S., Asano R., Shime H., Shinano T. A rapid and simple PCR method for identifying isolates of the genus Azospirillum within populations of rhizosphere bacteria // Appl. Microbiol. 2011. V. 111. P. 915–924. https://doi.org/10.1111/j.1365-2672.2011.05115.x
  34. Singh D., Thapa S., Singh J.P., Mahawar H., Saxena A.K., Singh S.K., Mahla H.R., Choudhary M., Parihar M., Choudhary K.B., Chakdar H. Prospecting the potential of plant growth-promoting microorganisms for mitigating drought stress in crop plants // Curr. Microbiol. 2024. V. 81. Art. 84. https://doi.org/10.1007/s00284-023-03606-4
  35. Skvortsov I.M., Ignatov V.V. Extracellular polysaccharides and polysaccharide-containing biopolymers from Azospirillum species: properties and the possible interaction with plant roots // FEMS Microbiol. Lett. 1998. V. 165. P. 223‒229.
  36. Tarrand J.J., Krieg N.R., Döbereiner J. A taxonomic study of the Spirillum lipoferum group with description of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum braslense sp. nov. // Can. J. Microbiol. 1978. V. 24. P. 967–980.
  37. Viruega-Góngora V.I., Acatitla-Jácome I.S., Reyes-Carmona S.R., Baca B.E., Ramírez-Mata A. Spatio-temporal formation of biofilms and extracellular matrix analysis in Azospirillum brasilense // FEMS Microbiol. Lett. 2020. V. 367. Art. fnaa037. https://doi.org/10.1093/femsle/fnaa037
  38. Wang D., Xu A., Elmerich C., Ma L.Z. Biofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditions // ISME J. 2017. V. 11. P. 1602–1613. https://doi.org/ 10.1038/ismej.2017.30
  39. Zhang C., Gao N., Na X., Li K., Pu M., Sun H., Song Y., Peng T., Fei P., Li J., Cheng Z., He X., Liu M., Wang X., Kardol P., Bi Y. UV-B stress reshapes root-associated microbial communities and networks, driven by host plant resistance // Soil Biol. Biochem. 2025. V. 205. Art. 109767. https://doi.org/10.1016/j.soilbio.2025.109767

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).