Nonlinear Model of Deformation of Crystalline Media Allowing for Martensitic Transformations: Plane Deformation


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This article is devoted to development of mathematical solutions of statics equations of plane nonlinear deformation of crystalline media with a complex lattice allowing for martensitic transformations. Statics equations comprised of a set of four coupled nonlinear equations are reduced to a set of separate equations. The macrodisplacement vector is sought in the Papkovich-Neuber form. The microdisplacement vector is determined by the sine-Gordon equation with a variable coefficient (amplitude) before the sine and Poisson’s equation. For the case of constant amplitude the class of doubly periodic solutions has been determined which are expressed via elliptical Jacobian functions. It has been demonstrated that nonlinear theory leads to a combination of solutions describing fragmentation of the crystalline medium, occurrence of structural imperfections of various types, phase transformations, and other peculiarities of deformation which occur under the action of intensive loads and are not described by classical continuum mechanics.

Авторлар туралы

E. Aero

Institute for Problems in Mechanical Engineering

Email: bulygin_an@mail.ru
Ресей, St. Petersburg, 199178

A. Bulygin

Institute for Problems in Mechanical Engineering

Хат алмасуға жауапты Автор.
Email: bulygin_an@mail.ru
Ресей, St. Petersburg, 199178

Yu. Pavlov

Institute for Problems in Mechanical Engineering

Email: bulygin_an@mail.ru
Ресей, St. Petersburg, 199178

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2019