Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 52, № 3 (2017)

Article

On models and methods of mechanics of pneumatic tires and rubber-cord shells. Development of the ideas due to Professor V. L. Biderman

Belkin A., Mukhin O., Sorokin F.

Аннотация

A survey of work of Professor V. L. Biderman’s scientific school concerned with the mechanics of tires and rubber-cord shells is presented. Analytical models of diagonal and radial tires aimed at analyzing their stress-strain state, calculating the critical rolling speed, and determining their operating characteristics are discussed. The theory of pneumatic lattice shells is presented in detail, and its new technical applications are considered. The equations of lattice shells of revolution are generalized to the case of nonsymmetric cord placement.

Mechanics of Solids. 2017;52(3):233-242
pages 233-242 views

Rotation of the apparent vibration plane of a swinging spring at the 1:1:2 resonance

Petrov A.

Аннотация

Nonlinear spatial vibrations of a mass point on a weightless elastic suspension (pendulum on a spring) are considered. The frequency of vertical vibrations is assumed to be equal to the doubled swinging frequency (the 1:1:2 resonance). In this case, as numerical calculations and experiments show, the vertical vibrations are unstable, which leads to the vertical vibration energy transfer to the pendulum swinging energy. The vertical vibrations of the mass point decay and, after a certain time period, the pendulum starts swinging in a certain vertical plane. This swinging is also unstable, which results in the reverse energy transfer into the vertical vibration mode. The vertical vibrations are again repeated. But after the second transfer of the vertical vibration energy to the pendulum swinging energy, the apparent plane of vibrations rotates by a certain angle. These effects are described analytically; namely, the energy transfer period, the time variations in the amplitudes of both modes, and the variations in the angle of the apparent vibration plane are determined. An asymptotic solution is also constructed for the mass point trajectory in the orbit elements. In projection on the horizonal plane, the mass point moves in a nearly elliptic trajectory. The ellipse semiaxes slowly vary with time, so that their product remains constant, and the major semiaxis slowly rotates at a constant sectorial velocity. The obtained analytic time dependence of the ellipse semiaxes and the precession angle agree well with the results of numerical calculations.

Mechanics of Solids. 2017;52(3):243-253
pages 243-253 views

Vibrations of mechanical systems with energy dissipation hysteresis

Danilin A.

Аннотация

A phenomenological approach which we refer to as kinematic is proposed to describe hysteresis; according to this approach, the force and kinematic parameters of a mechanical system are related by a first-order ordinary differential equation. The right-hand side is chosen in the class of functions ensuring the asymptotic approach of the solution to the curves of the enveloping (limit) hysteresis cycle of steady-state vibrations. The coefficients of the equation are identified by experimental data for the enveloping cycle. The proposed approach permits describing the hysteresis trajectory under the conditions of unsteady vibrations with an arbitrary starting point inside the region of the enveloping cycle. As an example, we consider the problem on forced vibrations of a pendulum-type damper of low-frequency vibrations.

Mechanics of Solids. 2017;52(3):254-265
pages 254-265 views

On equilibrium configurations and their stability for a system of two coupled pendulums

Evdokimenko A.

Аннотация

A mechanical system consisting of two identical mathematical pendulums connected by a linear spring is considered under the assumption that the pendulum suspension points lie on a horizontal straight line and the system is in a homogeneous gravitational field. The equilibrium configurations of this mechanical system and their stability are studied. The results are represented in the form of bifurcation diagrams.

Mechanics of Solids. 2017;52(3):266-277
pages 266-277 views

Synthesis of a controller for stabilizing the motion of a rigid body about a fixed point

Zabolotnov Y., Lobanov A.

Аннотация

A method for the approximate design of an optimal controller for stabilizing the motion of a rigid body about a fixed point is considered. It is assumed that rigid body motion is nearly the motion in the classical Lagrange case. The method is based on the common use of the Bellman dynamic programming principle and the averagingmethod. The latter is used to solve theHamilton–Jacobi–Bellman equation approximately, which permits synthesizing the controller. The proposed method for controller design can be used in many problems close to the problem of motion of the Lagrange top (the motion of a rigid body in the atmosphere, the motion of a rigid body fastened to a cable in deployment of the orbital cable system, etc.).

Mechanics of Solids. 2017;52(3):278-288
pages 278-288 views

Laboratory research of fracture geometry in multistage HFF in triaxial state

Bondarenko T., Hou B., Chen M., Yan L.

Аннотация

Multistage hydraulic fracturing of formation (HFF) in wells with horizontal completion is an efficientmethod for intensifying oil extraction which, as a rule, is used to develop nontraditional collectors. It is assumed that the complicated character of HFF fractures significantly influences the fracture geometry in the rock matrix. Numerous theoretical models proposed to predict the fracture geometry and the character of interaction of mechanical stresses in the multistage HFF have not been proved experimentally. In this paper, we present the results of laboratory modeling of the multistage HFF performed on a contemporary laboratory-scale plant in the triaxial stress state by using a gel-solution as the HFF agent. As a result of the experiment, a fracturing pattern was formed in the cubic specimen of the model material. The laboratory results showed that a nearly plane fracture is formed at the firstHFF stage, while a concave fracture is formed at the second HFF stage. The interaction of the stress fields created by the two principal HFF fractures results in the growth of secondary fractures whose directions turned out to be parallel to the modeled well bore. But this stress interference leads to a decrease in the width of the second principal fracture. It is was discovered that the penny-shaped fracture model is more appropriate for predicting the geometry of HFF fractures in horizontal wells than the two-dimensional models of fracture propagation (PKN model, KGD model). A computational experiment based on the boundary element method was carried out to obtain the qualitative description of the multistage HFF processes. As a result, a mechanical model of fracture propagation was constructed,which was used to obtain the mechanical stress field (the stress contrast) and the fracture opening angle distribution over fracture length and fracture orientation direction. The conclusions made in the laboratory modeling of the multistage HFF technology agree well with the conclusions made in the computational experiment. Special attention must be paid to the design of the HFF stage spacing density in the implementation of the multistage HFF in wells with horizontal completion.

Mechanics of Solids. 2017;52(3):289-298
pages 289-298 views

Normal wave diffraction on a plate submerged in a liquid: Level gauge model, factorization method modification, and waveguide quasiresonances

Byrdin V.

Аннотация

An exact solution is obtained for onemore new diffraction problem whose transcendental difficulty has been known since Sommerfeld and Kirchhoff. The model of waveguide level gauge, where the main problem is the bulk diffraction of normal waves in a layered structure consisting of an elastic plate between two semi-infinite liquid layers, is investigated. The boundary value problem is solved by using a modification of the Wiener–Hopf factorization method; the factorization is used twice to solve two systems of underdetermined functional equations, and this is a specific characteristics of the problem and amethodological novelty. The proposed modification is acceptable for the class of such problems. The diffracted spectra are analyzed; the waveguide quasiresonances are physically treated; the effect of pure Lamb wave propagation under the liquid is established; the narrow-band backward-wave modes are determined.

Mechanics of Solids. 2017;52(3):299-314
pages 299-314 views

Contact problem for an orthotropic half-space

Pozharskii D.

Аннотация

Numerical and analytical solutions of the 3D contact problem of elasticity on the penetration of a rigid punch into an orthotropic half-space are obtained disregarding the friction forces.A numericalmethod ofHammerstein-type nonlinear boundary integral equations was used in the case of unknown contact region, which permits determining the contact region and the pressure in this region. The exact solution of the contact problem for a punch shaped as an elliptic paraboloid was used to debug the program of the numerical method. The structure of the exact solution of the problem of indentation of an elliptic punch with polynomial base was determined. The computations were performed for various materials in the case of the penetration of an elliptic or conical punch.

Mechanics of Solids. 2017;52(3):315-322
pages 315-322 views

Elastic fields in rotating transversely isotropic media

Vakhtin Y., Pogorelov V., Sizov V.

Аннотация

Representation of elastic fields in terms of scalar functions, which permit reducing the problems of determining these fields to determining scalar potentials, are generalized to the case of transversely isotropic media rotating at a constant angular velocity. Relations for calculating the parameters of surface acoustic waves (SAW) propagating in a rotating transversely isotropic halfspace with various directions of the medium material symmetry axis with respect to the half-space surface are given.

Mechanics of Solids. 2017;52(3):323-328
pages 323-328 views

Vibrations of structurally orthotropic laminated shells under thermal power loading

Kogan E., Lopanitsyn E.

Аннотация

On the basis of the linearized version of equations obtained in a geometrically nonlinear statement and describing the nonaxisymmetric strain of nonshallow sandwich structure orthotropic shells under thermal power loading, the Rayleigh–Ritz method with polynomial approximation of displacements and shear strains is used to solve the problem of small free vibrations of axisymmetrically thermally preloaded freely supported three-layer conical shell. The causes of dynamical fracture of the shell under study are revealed.

Mechanics of Solids. 2017;52(3):329-341
pages 329-341 views

Scope of inextensible frame hypothesis in local action analysis of spherical reservoirs

Vinogradov Y.

Аннотация

Spherical reservoirs, as objects perfect with respect to their weight, are used in spacecrafts, where thin-walled elements are joined by frames into multifunction structures. The junctions are local, which results in origination of stress concentration regions and the corresponding rigidity problems. The thin-walled elements are reinforced by frame to decrease the stresses in them. To simplify the analysis of the mathematical model of common deformation of the shell (which is a mathematical idealization of the reservoir) and the frame, the assumption that the frame axial line is inextensible is used widely (in particular, in the manual literature). The unjustified use of this assumption significantly distorts the concept of the stress-strain state. In this paper, an example of a lens-shaped structure formed as two spherical shell segments connected by a frame of square profile is used to carry out a numerical comparative analysis of the solutions with and without the inextensible frame hypothesis taken into account. The scope of the hypothesis is shown depending on the structure geometric parameters and the load location degree. The obtained results can be used to determine the stress-strain state of the thin-walled structure with an a priori prescribed error, for example, in research and experimental design of aerospace systems.

Mechanics of Solids. 2017;52(3):342-352
pages 342-352 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».