Periodic Solutions of Second-Order Differential Equations with Large Parameters
- Авторлар: Sazonov V.V.1, Troitskaya A.V.2
-
Мекемелер:
- Keldysh Institute of Applied Mathematics of RAS
- Moscow State University
- Шығарылым: Том 53, № 2S (2018): Suppl
- Беттер: 87-94
- Бөлім: Article
- URL: https://ogarev-online.ru/0025-6544/article/view/163627
- DOI: https://doi.org/10.3103/S0025654418050151
- ID: 163627
Дәйексөз келтіру
Аннотация
A second-order differential equation containing a large parameter is considered. Such an equation can be interpreted as an equation of constrained oscillations of a mechanical system with one degree of freedom, provided that the fundamental frequency of the system substantially exceeds the external frequency. We provide a new proof of the existence of a periodic solution of that equation such that it is close to the periodic solution of the corresponding degenerate equation. That proof is obtained by means of the Poincaré method.
Авторлар туралы
V. Sazonov
Keldysh Institute of Applied Mathematics of RAS
Хат алмасуға жауапты Автор.
Email: sazonov@keldysh.ru
Ресей, Moscow, 125047
A. Troitskaya
Moscow State University
Email: sazonov@keldysh.ru
Ресей, Moscow, 119991
Қосымша файлдар
