On the Type of Flexural Edge Wave on a Circular Plate
- Authors: Ukrainskii D.V.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 53, No 5 (2018)
- Pages: 501-509
- Section: Article
- URL: https://ogarev-online.ru/0025-6544/article/view/163388
- DOI: https://doi.org/10.3103/S0025654418080046
- ID: 163388
Cite item
Abstract
The article deals with the question of what is a type of flexural edge wave on a circular plate. It is shown that, in contrast to the case of a rectilinear plate, the flexural edge wave on a circular plate is a wave of fundamentally different type, namely a whispering gallery wave. With an increase in the wave number, this wave gradually turns into an analogue of the Konenkov wave, but this happens in the region of very short waves. The dependence on Poisson’s ratio (the “critical” value of the harmonic number, at which the wave transformation from whispering gallery type to the Konenkov type occurs) is constructed. The certain conditions, under which the transition region does not go beyond the scope of the Kirchhoff theory, are determined.
About the authors
D. V. Ukrainskii
Lomonosov Moscow State University
Author for correspondence.
Email: d.v.ukrainskiy@gmail.com
Russian Federation, Leninskie Gory 1, Moscow, 119991
Supplementary files
