RTH MINERALIZATION IN RIFT FORMATIONS OF THE ISHLYA GRABEN (WESTERN SLOPE OF THE SOUTHERN URALS)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Rift formations of the Ishlya graben, widespread on the western slope of the Southern Urals, are represented by alternating terrigenous rocks (carbonaceous shales, siltstones, siltstones) with a volcano-plutonic association (gabbrodolerites, basic effusives with a small amount of pyroclastic material). In the rocks of the Ishlya graben, complex rare earth mineralization was discovered, represented by allanite-(Ce), REE-containing epidote, monazite-(Ce), xenotime-(Y), chevkinite-(Ce), fergusonite-(Nb), rare earth fluorocarbonates (bastnaesite-(Ce), hydroxylbastnaesite-(Ce), parisite-(Ce), synchysite-(Ce)), which is characterized by a wide variety of morphological types of mineralization and the presence of complex associations. Based on the analysis of the chemical composition of metamorphic minerals, the P–T parameters of rock metamorphism were established (T = 250–600°C, P = 2–10 kbar), the chemical composition of the fluid phase and its temperature (CaCl2 + NaCl; T = 180–408°C, for primary inclusions and FeCl2; T = 121–248°C for secondary ones), as well as the hematization temperature (465–593°C) andre-equilibration of the ilmenite-titanomagnetite association (T = 501–576°C at oxygen fugacity from –23.15 to –21.25) were determined. It is shown that in the natural environment, the processes of rare earth mineral formation are diverse and multifactorial, with the chemistry of the local-scale mineral formation environment being of great importance. Based on the comparative analysis of the chemical composition of monazite and xenotime, it was established that neither the configuration of the normalized graphs nor the chemical composition of the minerals found in the rocks of the Ishlya graben and the Shatak complex correspond to analogs from alluvial deposits. Thus, it can be stated that the primary source of rare-earth phosphates from channel and alluvial deposits are the Riphean-Vendian metamorphosed rocks of the eastern subzone of the Bashkir meganticlinorium.

About the authors

S. G. Kovalev

Institute of Geology — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences (IG UFRC RAS)

Email: kovalev@ufaras.ru
Ufa, 450077

S. S. Kovalev

Institute of Geology — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences (IG UFRC RAS)

Email: kovalev@ufaras.ru
Ufa, 450077

References

  1. Алексеев А.А., Ковалев С.Г., Тимофеева Е.А. Белорецкий метаморфический комплекс. Уфа.: ИГ УНЦ РАН, ООО "ДизайнПолиграфСервис", 2009. 208 с.
  2. Алексеев А.А., Тимофеева Е.А. Редкоземельно-фосфатная минерализация в метатерригенных толщах рифея Башкирского мегантиклинория // Геологический сборник: информационные материалы / Отв. ред. В.Н. Пучков. Уфа: ИГ УНЦ РАН, ДизайнПолиграфСервис, 2007. № 6. С. 251–257. http://ig.ufaras.ru/File/E2007/30_01_07.pdf
  3. Беккер Ю.Р. Литологические особенности олигомиктовых пород девона алмазоносных районов Южного Урала // Геология и полезные ископаемые Урала и Тургая // Материалы Всесоюзного научно-исследовательского геологического института ВСЕГЕИ. Новая серия / Министерство геологии и охраны недр СССР. Вып. 39. Л.: ВСЕГЕИ, 1960. С. 73–102.
  4. Булах А.Г. Руководство и таблицы для расчета формул минералов. М.: Недра, 1967. 141 с.
  5. Добрецов Н.Л., Лаврентьев Ю.Г., Пономарева Л.Г. и др. Статистические исследования белых слюд глаукофансланцевых толщ // Статистические методы в геологии / Ред. Н.Л. Добрецов. Новосибирск: Наука, 1974. С. 113–133.
  6. Ковалев С.Г., Высоцкий И.В., Мичурин С.В. и др. Геология, минералогия и металлогеническая специализация углеродсодержащих толщ Улуелгинско-Кудашмановской зоны (западный склон Южного Урала) // Литосфера. 2013. № 3. С. 67–88.
  7. Ковалев С.Г., Ковалев С.С. Ксенотимовая минерализация в различных структурно-вещественных комплексах Башкирского мегантиклинория (Южный Урал) // Записки Российского минералогического общества. 2022. № 1. С. 74–91.
  8. Ковалев С.Г., Ковалев С.С., Высоцкий С.И. Th–REE минерализация в докембрийских породах Башкирского мегантиклинория: видовое разнообразие и генезис // Записки Российского минералогического общества. 2017. № 5. С. 59–79.
  9. Ковалев С.С., Мичурин С.В., Канипова З.А. Термобарогеохимия жильного кварца из углеродсодержащих сланцев Башкирского мегантиклинория // Геология. Известия Отделения наук о Земле и природных ресурсов АН РБ. 2016. № 22. С. 28–37.
  10. Кривовичев В.Г., Гульбин Ю.Л. Рекомендации по расчету и представлению формул минералов по данным химических анализов // Записки Российского минералогического общества. 2022. Ч. CLI. № 1. С. 114–124.
  11. Маслов А.В., Гареев Э.З., Подковыров В.Н. и др. Литогеохимия обломочных пород машакской свиты (западный склон Южного Урала): в поисках "камуфлированной" пирокластики // Вестник Санкт-Петербургского университета. Науки о Земле. 2020. Ч. 65. № 1. С. 121–145. https://doi.org/10.21638/spbu07.2020.107
  12. Орлова М.Т. Акцессорные минералы древних немых толщ западного склона Южного Урала // Геология и полезные ископаемые Урала и Тургая // Материалы Всесоюзного научно-исследовательского геологического института ВСЕГЕИ. Новая серия / Министерство геологии и охраны недр СССР. Вып. 39. Л.: ВСЕГЕИ, 1960. С. 31–43.
  13. Bingen B., Demaiffe D., Hertogen J. Redistribution of rare earth elements, thorium, and uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: The role of apatite and monazite in orthogneisses from southwestern Norway // Geochim. Cosmochim. Acta. 1996. V. 60(8). P. 1341–1354.
  14. Cabella R., Lucchetti G., Marescotti P. Authigenic monazite and xenotime from pelitic metacherts in pumpellyite actinolite-facies conditions, Sestri-Voltaggio Zone, central Liguria, Italy // Canad. Mineral. 2001. V. 39. P. 717–727.
  15. Chopin C. Talc-phengite: a widespread assemblage in high-grade pelitic blueschists of the Western Alps // J. Petrol. 1981. V. 22(4). Р. 628–650.
  16. Ciobanu C.L., Kontonikas-Charos A., Slattery A. et al. Short-range stacking disorder in mixed-layer compounds: A HAADF STEM study of bastnäsite-parisite intergrowths // Minerals. 2017. V. 7(11). P. 227. https://doi.org/10.3390/min7110227
  17. Féménias O., Mercier J.C.C., Nkono C. et al. Calcic amphibole growth and compositions in calc-alkaline magmas: Evidence from the Motru Dike Swarm (Southern Carpathians, Romania) // Amer. Miner. 2006. V. 91. P. 73–81.
  18. Finger F., Krenn E. Three metamorphic monazite generations in a high pressure rocks from Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a PT loop // Lithos. 2006. V. 95. P. 103–115.
  19. Franz G., Anderehs G., Rhede D. Crystal chemistry of monazite and xenotime from Saxothuringian-Moldanubian metapelites, NE Bavaria, Germany // Eur. J. Mineral. 1996. V. 8. Iss. 5. P. 1097–1118.
  20. Gibson D.H., Carr S.D., Brown R.L. et al. Correlations between chemical and age domains in monazite, and metamorphic reactions involving major pelitic phases: an integration of ID-TIMS and SHRIMP geochronology with Y–Th–U X-ray mapping // Chem. Geol. 2004. V. 211. P. 237–260.
  21. Heinrich W., Andrehs G. and Franz G. Monazite-xenotime miscibility gap thermometry. I. An empirical calibration // Journal of Metamorphic Geology. 1997. V. 15(1). P. 3–16.
  22. Janots E., Engi M., Rubatto D. et al. Metamorphic rates in collisional orogeny from in situ allanite and monazite dating // Geology. 2009. V. 37(1). P. 11–14.
  23. Kohn M.J., Malloy M.A. Formation of monazite via prograde metamorphic reactions among common silicates: Implications for age determinations // Geochim. Cosmochim. Acta. 2004. V. 68(1). P. 101–113.
  24. Kovalev S.G., Kovalev S.S., Sharipova A.A. Rare-Earth Mineralization in Terrigenous Rocks of the Shatak Complex (Southern Urals): Species Diversity and Features of Chemical Composition // Lithology and Mineral Resources. 2024. V. 59(1). P. 14–26.
  25. Kovalev S.G., Puchkov V.N., Kovalev S.S. et al. The First Quantitative Evaluation Data on Vendian Metamorphism in the Eastern Part of the Bashkir Meganticlinorium // Doklady Earth Sciences. 2018. V. 483(1). P. 1418–1422.
  26. Kranidiotis P., MacLean W.H. Systematic of Chlorite Alteration at the Phelps Dodge Massive Sulfide Deposit, Matagami, Quebec // Econ. Geol. 1987. V. 82(7). P. 1808–1911.
  27. Krogh E.J., Raheim A. Temperature and pressure dependence of Fe–Mg partitioning between garnet and phengite, with particular reference eclogits // Contrib. Mineral Petrol. 1978. V. 66. Р. 75–80.
  28. Lanzirotti A., Hanson G.N. Geochronology and geochemistry of multiple generations of monazite from the Wepawaug Schist, Connecticut, USA: implications for monazite stability in metamorphic rocks // Contrib. Mineral. Petrol. 1996. V. 125. P. 332–340.
  29. Lepage L.D. ILMAT: an excel worksheet for ilmenite-magnetite geothermometry and geobarometry // Comput. Geosci. 2003. V. 29(5). P. 673–678.
  30. Lindsley D.H., Spencer K.J. Fe–Ti oxide geothermometry: Reducing analyses of coexisting Ti-magnetite (Mt) and ilmenite (Ilm) // EOS. Transactions American Geophysical Union. 1982. V. 63. № 18. P. 471.
  31. Massonne H.J., Schreyer By.W. Stability field of the high-pressure assemblage talc + phengite and two new phengite barometers // Europ J. Mineral. 1989. V. 1(3). Р. 391–410.
  32. McDonough W.F., Sun S.S. Composition of the Earth. Chemical Geology. 1995. 120(3-4), P. 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
  33. McFarlane C.R.M., Connelly J.N., Carlson W.D. Monazite and xenotime petrogenesis in the contact aureole of the Makhavinekh Lake Pluton, northern Labrador // Contrib. Mineral. Petrol. 2005. V. 148. P. 524–541.
  34. Migdisov A., Williams-Jones A. Hydrothermal transport and deposition of the rare earth elements by uorine-bearing aqueous liquids // Mineralium Deposita. 2014. V. 49. P. 987–997.
  35. Mutch E.J.F., Blundy J.D., Tattitch B.C. et al. An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer // Contrib. Mineral. Petrol. 2016. V. 171. № 85.
  36. Overstreet W.C. The geologic occurrence of monazite. Washington: U.S. Govt. Print. Off., 1967. 327 р.
  37. Petrik I., Broska I., Lipka J. et al. Granitoid allanite-(Ce) substitution relations, redox conditions and REE distributions (on an example of I-type granitoids, Western Carpathians, Slovakia) // Geol Carpath. 1995. V. 46(2). P. 79–94.
  38. Rudnick R.L., Gao S. Composition of the Continental Crust // Treatise on Geochemistry. 2003. V. 3. P. 1–64. https://doi.org/10.1016/b0-08-043751-6/03016-4
  39. Santana I.V., Wall F., Botelho N.F. Occurrence and behavior of monazite-(Ce) and xenotime-(Y) in detrital and saprolitic environments related to the Serra Dourada granite, Goiás/Tocantins State, Brazil: Potential for REE deposits // Journal of Geochemical Exploration. 2015. V. 155. P. 1–13.
  40. Schmandt D.S., Cook N.J., Ciobanu C.L. et al. Rare Earth Element Fluorocarbonate Minerals from the Olympic Dam Cu–U–Au–Ag Deposit, South Australia // Minerals. 2017. V. 7(10). P. 202. https://doi.org/10.3390/min7100202
  41. Smith H.A., Barero B. Monazite U‒Pb dating of staurolite grade metamorphism in pelitic schists // Contrib. Mineral. Petrol. 1990. V. 105. P. 602–615.
  42. Tomkins H.S., Pattison D.R.M. Accessory phase petrogenesis in relation to major phase assemblages in pelites from the Nelson contact aureole, southern British Columbia // J. Metam. Geol. 2007. V. 25. P. 401–421.
  43. Warr L.N. IMA–CNMNC approved mineral symbols // Mineral. Mag. 2021 V. 85(3). P. 291–320.
  44. Wing B.A., Ferry J.M, Harrison T.M. Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology // Contrib. Mineral. Petrol. 2003. V. 145. P. 228–250.
  45. Zhenga X., Liub Y., Zhangd L. The role of sulfate-, alkali-, and halogen-rich fluids in mobilization and mineralization of rare earth elements: Insights from bulk fluid compositions in the Mianning-Dechang carbonatite-related REE belt, southwestern China // Lithos. 2021. V. 386‒387. A. 106008. https://doi.org/10.1016/j.lithos.2021.106008

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).