Predictors of Insect Damage to Forest Stands According to Satellite Data on Example of Siberian Silkmoth Dendrolimis Sibiricus Tschetv

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Population outbreaks of such species as Dendrolimus sibiricus Tschetv., in Siberian taiga forests begin with areas of several hectares and develop up to hundreds of thousands of hectares, resulting in significant damage to forests. Boundaries of foci change with time depending on external factors, population dynamics, and the state of forage trees. In this regard, it is important to determine the beginning of an outbreak and the affected area in advance as predictors of increasing pest numbers. To assess necessary conditions for an outbreak, a method for assessing state of forest stands is proposed based on remote sensing data. In this regard, it is important to assess risks of outbreaks and to determine in advance their onset times and starting zones. In order to evaluate necessary conditions for an outbreak, a “cascade” of factors is considered: geophysical (solar activity), weather, and the state of forest stands. Each of these factors is characterized by its own area, within the bounds of which any changes in this particular factor affect the insect population.

About the authors

A. V. Kovalev

Krasnoyarsk Scientific Center, Siberian Branch of the RAS

Author for correspondence.
Email: sunhi.prime@gmail.com
Russia, 660036, Krasnoyarsk, Akademgorodok, 50

P. E. Tsikalova

Krasnoyarsk Scientific Center, Siberian Branch of the RAS

Email: sunhi.prime@gmail.com
Russia, 660036, Krasnoyarsk, Akademgorodok, 50

References

  1. Болдаруев В.О. Динамика численности сибирского шелкопряда и его паразитов. Улан-Удэ: Бурят. книж. из-во, 1969. 162 с.
  2. Исаев А.С., Пальникова Е.Н., Суховольский В.Г., Тарасова О.В. Динамика численности лесных насекомых-филлофагов: модели и прогнозы. М.: Товарищество научных изданий КМК, 2015. 276 с.
  3. Коломиец Н.Г. Паразиты и хищники сибирского шелкопряда. Новосибирск: Наука, 1962. 172 с.
  4. Кондаков Ю.П. Закономерности массовых размножений сибирского шелкопряда // Экология популяций лесных животных Сибири. Новосибирск: Наука, 1974. С. 206–265.
  5. Михайлов Ю.З., Сумина Н.Ю. Сибирский шелкопряд Dendrolimus superans (Butler, 1877) и борьба с ним в Иркутской области // Байкальский зоологический журн. 2012. № 3(11). С. 25–29.
  6. Павлов И.Н., Литовка Ю.А., Голубев Д.В., Астапенко С.А., Хромогин П.В. Новая вспышка массового размножения Dendrolimus sibiricus Tschetv. в Сибири (2012–2017 гг.): закономерности развития и перспективы биологического контроля // Сибирский экологический журн. 2018. № 4. С. 462–478.
  7. Плешанов А.С. Насекомые – дефолианты лиственничных лесов Восточной Сибири. Новосибирск: Наука, 1982. 209 с.
  8. Рожков А.С. Массовое размножение сибирского шелкопряда и меры борьбы с ним. М.: Наука, 1965. 178 с.
  9. Тарасова О.В., Волков В.Е. Влияние погодных условий на развитие вспышек массового размножения сибирского шелкопряда в Средней Сибири // Сибирский лесной журн. 2021. № 5. С. 49–59.
  10. Эпова В.И., Плешанов А.С. Зоны вредоносности насекомых-филлофагов Азиатской России. Новосибирск: Наука. Сибирская издательская фирма РАН. 1995. 147 с.
  11. Юрченко Г.И., Турова Г.И. Паразиты сибирского и белополосого шелкопрядов на Дальнем Востоке России // Энтомологические исследования в Сибири. Вып. 2. Красноярск: КФ РЭО. 2002. С. 75–86.
  12. Bayarjargal Y., Karnieli A., Bayasgalan M., Khudulmur S., Gandush C., Tucker C.J. A comparative study of NOAA-AVHRR derived drought indices using change vector analysis // International J. Remote Sensing. 2006. V. 105. № 1. P. 9–22.
  13. Bjørnstad O.N., Peltonen M., Liebhold A.M., Baltensweiler W. Waves of larch budmoth outbreaks in the European Alps // Science. 2002. V. 298. № 5595. P. 1020–1023.
  14. Boyd I.L., Freer-Smith P.H., Gilligan C.A., Godfray H.C.J. The consequence of tree pests and diseases for ecosystem services // Science. 2013. V. 342. P. 823.
  15. Cunha M., Richter C. A time-frequency analysis on the impact of climate variability with focus on semi-natural montane grassland meadows // IEEE Trans. Geosci. Remote Sens. 2014. V. 52. № 10. P. 6156–6164.
  16. Fahse L., Heurich M. Simulation and analysis of outbreaks of bark beetle infestations and their management at the stand level // Ecological Modelling. 2011. V. 222. № 11. P. 1833–1846.
  17. Fernández A., Fort H. Catastrophic phase transitions and early warnings in a spatial ecological model // J. Statistical Mechanics: Theory and Experiment. 2009. V. 9. P. P09014.
  18. Ims R.A., Yoccoz N.G., Hagen S.B. Do sub-Arctic winter moth populations in coastal birch forest exhibit spatially synchronous dynamics? // J. Animal Ecology. 2004. V. 73. P. 1129–1136.
  19. Johnson D.M., Liebhold A.M., Tobin P.C. Bjørnstad O.N. Allee effects and pulsed invasion by the gypsy moth // Nature. 2006. V. 444. P. 361–363.
  20. Kautz M., Meddens A.J.H., Hall R.J. Arneth A. Biotic disturbances in northern hemisphere forests-a synthesis of recent data, uncertainties and implications for forest monitoring and modeling // Global Ecology and Biogeography. 2017. V. 26. № 5. P. 533–552.
  21. Kosiba A.M., Meigs G.W., Tait E.R. Spatiotemporal patterns of forest damage and disturbance in the northeastern United States: 2000–2016 // Forest Ecology and Management. 2018. V. 430. P. 94–104.
  22. Kovalev A., Soukhovolsky V. Analysis of Forest Stand Resistance to Insect Attack According to Remote Sensing Data // Forests. 2021. V. 12. P. 1188. https://doi.org/10.3390/f12091188
  23. Lewis M.A., Nelson W., Xu. C. A structured threshold model for mountain pine beetle outbreak // Bulletin of Mathematical Biology. 2010. V. 72. P. 565–589.
  24. Liang L., Chen Y., Hawbaker T., Zhu Z., Gong P. Mapping mountain pine beetle mortality through growth trend analysis of time-series landsat data // Remote Sens. 2014. V. 6. P. 5696–5716.
  25. Liebhold A.M., Koenig W.D., Bjørnstad O.N. Spatial synchrony in population dynamics // Annual Review of Ecology, Evolution, and Systematics. 2004. V. 35. P. 467–490.
  26. Liu Yan, Hill M.J., Zhang Xiaoyang, Wang Zhuosen, Richardson A.D., Hufkens K., Filippa G., Baldocchi D.D., Ma Siyan, Verfaillie J., Schaaf C.B. Using data from Landsat, MODIS, VIIRS and Pheno Cams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales // Agricultural and Forest Meteorology. 2017. V. 237–238. P. 311–325.
  27. Logan J.A., White P., Bentz B.J., Powell J.A. Model analysis of spatial patterns in mountain pine beetle outbreaks // Theoretical Population Biology. 1998. V. 53. № 3. P. 236–255.
  28. Nelson W.A., Bjørnstad O.N., Yamanaka T. Recurrent insect outbreaks caused by temperature-driven changes in system stability // Science. 2013. V. 341. № 6147. P. 796–799.
  29. Olsson P.O., Lindstrom J., Eldundh L. Near real-time monitoring of insect induced defoliation in subalpine birch forests with MODIS derived NDVI // Remote Sensing of Environment. 2016. V. 181. P. 42–53.
  30. Peters D.P.C., Pielke R.A., Bestelmeyer B.T., Allen C.D., Munsonmcgee S., Havstad K.M. Cross-scale interactions, nonlinearities, and forecasting catastrophic events // Proceedings of the National Academy of Sciences. 2004. V. 101. P. 15130–15135.
  31. Raffa K.F., Aukema B.H., Bentz B.J., Carroll A.L., Hicke J.A., Turner M.G., Romme W.H. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions // Bioscience. 2008. V. 58. № 6. P. 501–517.
  32. Rechid D., Raddatz T.J., Jacob D. Parameterization of snow-free land surfacealbedo as a function of vegetation phenology based on MODIS data and appliedin climate modelling // Theoretical and Applied Climatology. 2009. V. 95. P. 245–255.
  33. Royama T. Population dynamics of the spruce budworm Choristoneura fumiferana // Ecological Monographs. 1984. V. 54. № 4. P. 429–462.
  34. Seidl R., Müller J., Hothorn T., Bässler C., Heurich M., Kautz M. Small beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the european spruce bark beetle // J. Applied Ecology. 2016. V. 53. № 2. P. 530–540.
  35. Seidl R., Thom D., Kautz M., Martin-Benito D., Peltoniemi M., Vacchiano G., Wild J., Ascoli D., Petr M., Honkaniemi J. Forest disturbances under climate change // Nature Climate Change. 2017. V. 7. № 6. P. 395.
  36. Senf C., Campbell E.M., Pflugmacher D., Wulder M.A., Hostert P. A multi-scale analysis of western spruce budworm outbreak dynamics // Landscape Ecology. 2017. P. 1–14.
  37. Spruce J.P., Sader S., Ryan R.E., Smoot J., Kuper P., Ross K., Prados D., Russell J., Gasser G., McKellip R., Hargrove W. Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks // Remote Sensing of Environment. 2011. V. 115. P. 427–437.
  38. Tenow O., Nilssen A.C., Bylund H. Geometrid outbreak waves travel across Europe // J. Animal Ecology. 2012. V. 82. № 1. P. 84–95.
  39. Thayn J.B. Using a remotely sensed optimized Disturbance Index to detect insect defoliation in the Apostle Islands, Wisconsin, USA // Remote Sensing of Environment. 2013. V. 136. P. 210–217.
  40. Tucker C.J., Sellers P.J. Satellite remote sensing of primary production // J. Remote Sensing. 1986. V. 7. P. 1395–1416.
  41. Verbesselt J., Zeileis A., Herold M. Near real-time disturbance detection using satellite image time series // Remote Sensing of Environment. 2012. V. 123. P. 98–108.
  42. Williams D.W., Liebhold A.M. Spatial synchrony of spruce budworm outbreaks in eastern North America // Ecology. 2000. V. 81. P. 2753–2766.
  43. Zhou G., Liebhold A.M. Forecasting the spatial dynamics of gypsy moth outbreaks using cellular transition models // Landscape Ecology. 1995. V.10. № 3. P. 177–189.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (109KB)
4.

Download (30KB)
5.

Download (45KB)
6.

Download (22KB)
7.

Download (31KB)
8.

Download (41KB)

Copyright (c) 2023 А.В. Ковалев, П.Е. Цикалова

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».