Interaction of ferroelectric domain walls and shape of equilibrium repolarization nuclei

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The growth of a repolarization nucleus in an electric field is hindered by cohesive forces acting near its tips on the adjacent domain walls. They can reach large values when the distance between the domain walls becomes comparable to their thickness. It is shown that the cohesive forces are expressed in terms of the coefficients of the Ginzburg–Landau energy expansion, which includes a gradient contribution. For a uniaxial ferroelectric, an estimate of the maximum value of the internal field associated with the gradient interaction of the domain walls is obtained. Its relation to the internal coercive field Ec0 in the Ginzburg–Landau theory is E* max/Ec0 = 3√3/8 ≈ 0.65.

Авторлар туралы

A. Belov

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Хат алмасуға жауапты Автор.
Email: belov@crys.ras.ru
Ресей, Moscow, 119333

Әдебиет тізімі

  1. Инденбом В.Л. // Изв. AH CCCP. Сep. физ. 1979. Т. 43. С. 1631.
  2. Инденбом В.Л., Чамров В.А. // Кристаллография. 1980. Т. 25. С. 213.
  3. Chen I.W., Wang Y. // Appl. Phys. Lett. 1999. V. 75. P. 4186. https://doi.org/10.1063/1.125577
  4. Chen I.W., Wang I. // Ferroelectrics. 1998. V. 206. P. 245. https://doi.org/10.1080/00150199808009162
  5. Belov A.Yu., Kreher W.S., Nicolai M. // Ferroelectrics. 2009. V. 391. P. 42. https://doi.org/10.1080/00150190903001128
  6. Belov A.Yu., Kreher W.S. // Ferroelectrics. 2009. V. 391. P. 12. https://doi.org/10.1080/00150190903001052
  7. Belov A.Yu., Kreher W.S. // Ferroelectrics. 2007. V. 351. P. 79. https://doi.org/10.1080/00150190701353093
  8. Viola G., Chong K.B., Guiu F., Reece M.J. // J. Appl. Phys. 2014. V. 115. P. 034106. https://doi.org/10.1063/1.4856235
  9. Du X., Chen I.W. // Mater. Res. Soc. Symp. Proc. 1998. V. 493. P. 311. https://doi.org/10.1557/PROC-493-311
  10. Nam S.M., Kil Y.B., Wada S., Tsurumi T. // Jpn. J. Appl. Phys. 2003. V. 42. № 12B. P. L1519. https://doi.org/10.1143/JJAP.42.L1519
  11. Tsurumi T., Num S.M., Kil Y.B., Wada S. // Ferroelectrics. 2001. V. 259. P. 43. https://doi.org/10.1080/00150190108008714
  12. Lawless W.N. // Phys. Rev. B. 1978. V. 17. P. 1458. https://doi.org/10.1103/PhysRevB.17.1458
  13. Jung D.J., Dawber M., Scott J.F. et al. // Integr. Ferroelectr. 2002. V. 48. P. 59. https://doi.org/10.1080/10584580215437
  14. Mulaosmanovic H., Ocker J., Müller S. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. P. 3792. https://doi.org/10.1021/acsami.6b13866
  15. Borowiak A.S., Garcia-Sanchez A., Mercone S. // 2016 Joint IEEE International Symposium on the Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (ISAF/ECAPD/PFM). IEEE. New York, 2016. P. 1. https://doi.org/10.1109/ISAF.2016.7578088
  16. Белов А.Ю. // Письма в ЖЭТФ. 2018. Т. 108. С. 225.
  17. Landauer R. // J. Appl. Phys. 1957. V. 28. P. 227. https://doi.org/10.1063/1.1722712
  18. Tagantsev A.K., Stolichnov I., Setter N. // Phys. Rev. B. 2002. V. 66. P. 214109. https://doi.org/10.1103/PhysRevB.66.214109
  19. Belov A.Yu. // Ferroelectrics. 2019. V. 544. P. 27. https://doi.org/10.1080/00150193.2019.1598180
  20. Belov A.Yu. // Ferroelectrics. 2022. V. 590. P. 19. https://doi.org/10.1080/00150193.2022.2037935
  21. Belov A.Yu. // Mater. Phys. Mech. 2024. V. 52. P. 18. https://doi.org/10.18149/MPM.5212024_2
  22. Belov A.Yu. // Ferroelectrics. 2025. V. 619. P. 25. https://doi.org/10.1080/00150193.2024.2327956
  23. Barenblatt G.I. // Adv. Appl. Mech. 1962. V. 7. P. 55. https://doi.org/10.1016/S0065-2156(08)70121-2

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Ескертпе

In the print version, the article was published under the DOI: 10.31857/S0023476125040055


© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).