SYNTHESIS OF CRYSTALS OF ULTIMATE SULFIDES IN SULFUR MELT IN A STATIONARY TEMPERATURE GRADIENT

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The possibilities of crystal growth of ultimate sulfides in molten sulfur in a stationary temperature gradient are described. The optimum synthesis mode is achieved when the temperature of the hot end (charge) is 550°C, the temperature of the cold end (crystallization) is 460°C. As a result, crystals of TiS3, ZrS3, HfS3, V40S60, NbS3, TaS3, PdS2, CuS, Ag2S, metallic Au, HgS, CdS, Ga2S3, In2S3, SiS2, SnS2, PbS, Sb2S3 and Bi2S3 of millimeter and submillimeter size were obtained. Only polycrystalline agglomerates of tens of microns in size were obtained when transferring some metals, such as tungsten. The possibility of obtaining crystals of double sulfides is shown using CrPS3 as an example. The considered technique allows obtaining crystals of the required quality without using special equipment. The small size of the crystals is sufficient for laboratory study.

Sobre autores

D. Chareev

Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences; Ural Federal University; Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Email: d.chareev@gmail.com
Chernogolovka, Russia; Ekaterinburg, Russia; Moscow, Russia

V. Zyabchenkov

Dubna State University

Dubna, Russia

S. Badmaeva

Dubna State University

Dubna, Russia

A. Nekrasov

Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences

Chernogolovka, Russia

Bibliografia

  1. Лякишев Н.П. Диаграммы состояния двойных металлических систем. М.: Машиностроение, 1996. 992 с.
  2. Yan J.Q., Sales B.C., Susner M.A., McGuire M.A. // Phys. Rev. Mater. 2017. V. 1. № 2. P. 023402. https://doi.org/10.1103/PhysRevMaterials.1.023402
  3. Чареев Д.А. // Кристаллография. 2016. Т. 61. № 3. С. 475. https://doi.org/10.7868/S002347611603005X
  4. Chajewski G., Szymański D., Daszkiewicz M., Kaczorowski D. // Mater. Horiz. 2024. V. 11. № 3. P. 855. https://doi.org/10.1039/D3MH01351K
  5. Ewald A.W., Tufte O.N. // J. Appl. Phys. 1958. V. 29. № 7. P. 1007. https://doi.org/10.1063/1.1723351
  6. Fiechter S., Kühne H.M. // J. Cryst. Growth. 1987. V. 83. P. 517. https://doi.org/10.1016/0022-0248(87)90246-6
  7. Chareev D.A., Khan M.E.H., Karmakar D. et al. // Cryst. Growth Design. 2023. V. 23. № 4. P. 2287. https://doi.org/10.1021/acs.cgd.2c01318
  8. Steudel R. // Top. Curr. Chem. 2003. V. 230. P. 81. https://doi.org/10.1007/b12115
  9. Bacon R.F., Fanelli R. // J. Am. Chem. Soc. 1943. V. 65. № 4. P. 639. https://doi.org/10.1021/ja01244a043
  10. Major F., Seeler F., Garlichs F. et al. Liquid Sulfur with Improved Viscosity as a Heat Transfer Medium. Patent EP2556129B1 (Germany). 2016.
  11. Rau H., Kutty T.R.N., De Carvalho J.G. // J. Chem. Thermodynamics. 1973. V. 5. № 2. P. 291. https://doi.org/10.1016/S0021-9614(73)80089-8

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).