EFFECT OF DEFORMATIONS ON PHOTOLUMINESCENT AND PIEZO CATALYTIC PROPERTIES OF ZnO TETRAPODS

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The interrelation of photoluminescent and piezocatalytic properties of ZnO is studied using the example of an array of tetrapods subjected to mechanical stretching and an array of tetrapods in an organic contaminant solution during ultrasonic treatment. The effect of tensile stresses on luminescent properties is demonstrated: with a 4% elongation, the integral intensity of the ultraviolet photoluminescence band in ZnO tetrapods decreases by 25%, and its maximum is mixed by 1.27 nm in the long-wavelength region. It has been shown that with ultrasound assistance with a frequency of 40 kHz and a power of 120 W, the efficiency of catalysis using ZnO tetrapods increases by 42%. The reason for the observed effects is the mechanically enhanced charge separation by piezoelectric fields. The mechanism of acceleration of catalysis under ultrasonic action is discussed.

Авторлар туралы

V. Krasnova

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC "Kurchatov Institute"

Moscow, Russia

A. Muslimov

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC "Kurchatov Institute"

Email: amuslimov@mail.ru
Moscow, Russia

A. Lavrikov

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC "Kurchatov Institute"

Moscow, Russia

R. Gulakhmedov

Dagestan State University

Makhachkala, Russia

F. Orudzhev

Dagestan State University

Makhachkala, Russia

V. Kanevsky

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC "Kurchatov Institute"

Moscow, Russia

Әдебиет тізімі

  1. Zhang Y.-H., Lee C.-H., Zhang X.-R. // J. Phys. D. 2019. V. 52. P. 455501. https://doi.org/10.1088/1361-6463/ab3605
  2. Shaikh F.K., Zeadally S. // Renew. Sustain. Energy Rev. 2016. V. 55. P. 1041. https://doi.org/10.1016/j.rser.2015.11.010
  3. Caliò R., Rongala U., Camboni D. et al. // Sensors. 2014. V. 14. P. 4755. https://doi.org/10.3390/s20123512
  4. Li H., Sang Y., Chang S. et al. // Nano Lett. 2015. V. 15. P. 2372. https://doi.org/10.1021/nl504630j
  5. Rai S.C., Wang K., Chen J.J. et al. // Adv. Electron. Mater. 2015. V. 1. P. 1400050. https://doi.org/10.1002/aelm.201400050
  6. Zhang Y., Schultz A.M., Salvador P.A., Rohrer G.S. // J. Mater. Chem. 2011. V. 21. P. 4168. https://doi.org/10.1039/C0JM04313C
  7. Sun C., Fu Y., Wang Q. et al. // RSC Adv. 2016. V. 6. P. 87446. https://doi.org/10.1039/C6RA13464E
  8. Hong D., Zang W., Guo X. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. P. 21302. https://doi.org/10.1021/acsami.6b05252
  9. Gulakhmedov R.R., Selimov D.A. , Krasnova V.V. et al. // Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2025. V. 19. № 4. P. 843. https://doi.org/10.1134/S1027451025701216
  10. Ning X., Hao A., Cao Y. et al. // J. Colloid Interface Sci. 2020. V. 577. P. 290. https://doi.org/10.1016/j.jcis.2020.05.082
  11. He J., Dong C., Chen X. et al. // Crystals. 2023. V. 13. P. 1382. https://doi.org/10.3390/cryst13091382
  12. An C., Qi H., Wang L. et al. // Nano Energy. 2020. V. 82. P. 105653. https://doi.org/10.1016/j.nanoen.2020.105653
  13. Al-Zuhairi O., Shuhaimi A., Nayan N. et al. // Coatings. 2022. V. 12 (2). P. 275. https://doi.org/10.3390/coatings12020275
  14. Wei S., Gao X., Wang X. et al. // J. Lumines. 2023. V. 257. P. 119740. https://doi.org/10.1016/j.jlumin.2023.119740
  15. Krasnova V.V., Muslimov A.E., Lavrikov A.S. et al. // Crystallography Reports. 2024. V. 69. № 3. P. 439. https://www.doi.org/10.1134/S1063774524600212
  16. Sun Y., Thompson S.E., Nishida T. // J. Appl. Phys. 2007. V. 101. P.104503. https://doi.org/10.1063/1.2730561
  17. Guilloy K., Pauc N., Gassenq A. // ACS Photo­nics. 2016. V. 3. P. 1907. https://doi.org/10.1021/acsphotonics.6b00429
  18. Orudzhev F., Muslimov A., Selimov D. et al. // Int. J. Mol. Sci. 2023. V. 24 (22). P. 16338. https://doi.org/10.3390/ijms242216338

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).