SIMULATION OF ZnWO4–MgWO4 SOLID SOLUTIONS BY THE METHOD OF INTERATOMIC POTENTIALS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The simulation of Zn1-x MgxWO4 solid solutions is accomplished using the method of empirical interatomic potentials. The dependences of the structure, elastic, and thermodynamic properties on the composition have been established. It is shown that as the fraction of magnesium in a solid solution increases, the volume, density, enthalpy, heat capacity, and entropy decrease, and the shear and bulk moduli increase. The dependencies are close to linear. The mixing functions are calculated. The enthalpy and volume of mixing are different from zero, which indicates that the solution is not ideal. It is shown that the Zn1-x MgxWO4 solution exists in the entire range of compositions.

About the authors

V. B Dudnikova

Lomonosov Moscow State University

Email: VDudnikova@hotmail.com
Moscow, Russia

E. V Zharikov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Moscow, Russia

N. N Eremin

Lomonosov Moscow State University; Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS

Moscow, Russia

References

  1. Spassky D., Omelkov S., Mägi H. et al. // Opt. Mater. 2014. V. 36. P. 1660. http://reserved.http://dx.doi.org/10.1016/j.optmat.2013.12.039
  2. Krutyak N., Nagirnyi V., Spassky D. et al. // Radiat. Meas. 2016. V. 90. P. 43. https://doi.org/10.1016/j.radmeas.2016.01.007
  3. Malyukin Y., Seminko V., Maksimchuk P. et al. // Opt. Mater. 2019. V. 98. 109455. https://doi.org/10.1016/j.optmat.2019.109455
  4. Krutyak N., Spassky D., Nagirnyi V. et al. // Opt. Mater. 2019. V. 96. 109362. https://doi.org/10.1016/j.optmat.2019.109362
  5. Крутяк Н.Р., Спасский Д.А., Сорокина Н.И. и др. // Кристаллография 2020. Т. 65. С. 871. https://doi.org/10.31857/S002347612006020X
  6. Ju X., Li X., Li W. et al. // Mater. Lett. 2012. V. 77. P. 35. http://dx.doi.org/10.1016/j.matlet.2012.02.125
  7. Mo F., Chen P., Guan A. et al. // J. Rare Earths. 2015. V. 33. P. 1064. http://dx.doi.org/10.1016/S1002-0721(14)60527-5
  8. Дудникова В.Б., Жариков Е.В., Еремин Н.Н. // Кристаллография 2025. Т. 70. № 1. С. 3. https://doi.org/10.31857/S0023476125010012
  9. Дудникова В.Б., Жариков Е.В., Еремин Н.Н. // Кристаллография. 2025. Т. 70. № 6. С. 931. https://doi.org/10.7868/S3034551025060069
  10. Mikhailik V.B., Kraus H. // Phys. Status Solidi. B. 2010. V. 247. P. 1583. https://doi.org/10.1002/pssb.200945500
  11. Lou Z., Hao J., Cocivera M. // J. Lumin. 2002. V. 99. P. 349. https://doi.org/10.1016/S0022-2313(02)00372-1
  12. Prasad M., Mondal M., Mukhopadhyay L.S. et al. // Mater. Today Proc. 2021. V. 46. P. 6388. https://doi.org/10.1016/j.matpr.2020.06.132
  13. Yang F.G., You Z.Y., Tu C.Y. // Laser Phys. Lett. 2012. V. 9. P. 204. https://doi.org/10.1002/lapl.201110127
  14. Loiko P., Chen M., Serres J.M. et al. // Opt. Lett. 2020. V. 45. P. 1770. https://doi.org/10.1364/OL.389627
  15. Chang L.L.Y., Scroger M.G., Phillips B. // J. Am. Ceram. Soc. 1966. V. 49. P. 385. https://doi.org/10.1111/j.1151-2916.1966.tb13291.x
  16. Danevich F.A., Chernyak D.M., Dubovik A.M. et al. // Nucl. Instrum. Methods Phys. Res. A. 2009. V. 608. P. 107. http://dx.doi.org/10.1016/j.nima.2009.06.040
  17. Gale J.D. // Z. Krist. 2005. V. 220. P. 552. https://doi.org/10.1524/zkri.220.5.552.65070
  18. Урусов В.С., Еремин Н.Н. Атомистическое компьютерное моделирование структуры и свойств неорганических кристаллов и минералов, их дефектов и твердых растворов. M.: ГЕОС, 2012. 428 с.
  19. Shannon R.D. // Acta Cryst. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).