EFFECT OF SOLVENT ISOTOPE COMPOSITION (H2O AND D2O) ON LYSOZYME OLIGOMER FORMATION UNDER CRYSTALLIZATION CONDITIONS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the method of small-angle X-ray scattering (SAXS), the temperature dependencies (in the range of 4 to 30°C with a 1°C step) of the structure of a lysozyme solution during the growth of tetragonal crystals were obtained for H2O and D2O solvents. It was found that, regardless of the solvent type, dimers and octamers form in the lysozyme crystallization solution. The volume fractions of the oligomers (dimers and octamers) are inversely proportional to the temperature change, both in the case of the H2O solvent and the D2O solvent. Under identical temperature conditions, the volume fraction of oligomers in the lysozyme crystallization solution in D2O is approximately 8% higher than in H2O. However, the same oligomer content in the lysozyme crystallization solutions in H2O and D2O is achieved when the temperature of the H2O solution is approximately 10°C lower than that of the D2O solution. This may be explained by the distinct influence of the solvent on protein hydration.

About the authors

M. A Marchenkova

National Research Centre "Kurchatov Institute"; Southern Federal University

Email: marchenkova@crys.ras.ru
Moscow, Russia; Rostov-on-Don, Russia

P. V Konarev

National Research Centre "Kurchatov Institute"; Southern Federal University

Moscow, Russia; Rostov-on-Don, Russia

Yu. V Pisarevsky

National Research Centre "Kurchatov Institute"

Moscow, Russia

References

  1. McPherson A., Cudney B. // Acta Cryst. F. 2014. V. 70. № 11. P. 1445. https://doi.org/10.1107/S2053230X14019670
  2. Luft J.R., Newman J., Snell E.H. // Acta Cryst. F. 2014. V. 70. № 7. P. 835. https://doi.org/10.1107/S2053230X1401262X
  3. Zhang C.Y., Wu Z.Q., Yin et al. // Acta Cryst. F. 2013. V. 9. № 7. P. 821. https://doi.org/10.1107/S1744309113013651
  4. Astier J.P., Veesler S. // Cryst. Growth Des. 2008. V. 8. № 12. P. 4215. https://doi.org/10.1021/cg800665b
  5. Бойкова А.С., Дьякова Ю.А., Ильина К.Б. и др. // Кристаллография. 2017. Т. 62. № 6. С. 876. https://doi.org/10.7868/S0023476117060078
  6. Марченкова М.А., Конарев П.В., Бойкова А.С. и др. // Кристаллография. 2021. Т. 66. № 5. С. 723. https://doi.org/10.31857/S0023476121050131
  7. Marchenkova M.A., Konarev P.V., Kordonskaya Yu.V. et al. // Crystals. 2022. V. 12. P. 751. https://doi.org/10.3390/cryst12060751
  8. Марченкова М.А., Бойкова А.С., Ильина К.Б. и др. // Acta Naturae. 2023. Т. 15. № 1. С. 58. https://doi.org/10.7868/S0023476117060078
  9. De Yoreo J.J., Gilbert P.U., Sommerdijk N.A. et al. // Science. 2015. V. 349. P. aaa6760. https://doi.org/10.1126/science.aaa6760
  10. Sukhanov A.E., Konarev P.V., Timofeev V.I. et al. // Crystals. 2023. V. 13. P. 1577. https://doi.org/10.3390/cryst13111577
  11. Tanaka S., Ito K., Hayakawa R. et al. // J. Chem. Phys. 1999. V. 111. № 22. P. 10330. https://doi.org/10.1063/1.480381
  12. Niimura N., Minezaki Y., Ataka M. et al. // J. Cryst. Growth. 1995. V. 154. P. 136. https://doi.org/10.1016/0022-0248(95)00164-6
  13. Ducruix A., Guilloteau J.-P., Riès-Kautt M. et al. // J. Cryst. Growth. 1996. V. 168. № 1–4. P. 28. https://doi.org/10.1016/0022-0248(96)00359-4
  14. Giubertoni G., Bakker H.J., Russo D. // J. Phys. Chem. B. 2023. V. 127. P. 5678. https://doi.org/10.1021/acs.jpcb.3c04385
  15. Stefaniuk A. // Sci. Rep. 2022. V. 12. P. 23551. https://doi.org/10.1038/s41598-022-23551-9
  16. Bielskutė S. // Protein Sci. 2021. V. 30. P. 2181. https://doi.org/10.1002/pro.4110
  17. Tempra C., Sibani L., Hansen F.Y. et al. // J. Phys. Chem. B. 2023. V. 127. P. 5678. https://doi.org/10.1021/acs.jpcb.2c08270
  18. Banks H., Beck C., Buchholz C. et al. // Cryst. Growth Des. 2025. V. 25. P. 5174. https://doi.org/10.1021/acs.cgd.5c00116
  19. Pernot P., Round A., Barrett R. et al. // J. Synchrotron Radiat. 2013. V. 20. P. 660. https://doi.org/10.1107/S0909049513010431
  20. Round A., Felisaz F., Fodinger L. et al. // Acta Cryst. D. 2015. V. 71. P. 67. https://doi.org/10.1107/S1399004714026959
  21. Brennich M.E., Kieffer J., Bonamis G. et al. // J. Appl. Cryst. 2016. V. 49. P. 203. https://doi.org/10.1107/S1600576715024462
  22. Konarev P.V., Volkov V.V., Sokolova A.V. et al. // J. Appl. Cryst. 2003. V. 36. P. 1277. https://doi.org/10.1107/S0021889803012779
  23. Franke D., Petoukhov M.V., Konarev P.V. et al. // J. Appl. Cryst. 2017. V. 50. P. 1212. https://doi.org/10.1107/S1600576717007786
  24. Svergun D.I., Barberato C., Koch M.H.J. //J. Appl. Cryst. 1995. V. 28. P. 768. https://doi.org/10.1107/S0021889895007047
  25. Goryunov A.S. // Gen. Physiol. Biophys. 2006. V. 25. P. 303.
  26. Kresheck G.C., Schneider H., Scheraga H.A. // J. Phys. Chem. 1965. V. 69. P. 3132. https://doi.org/10.1021/j100893a054
  27. Gripon C., Legrand L., Rosenman I. et al. // J. Cryst. Growth. 1997. V. 177. P. 238. https://doi.org/10.1016/S0022-0248(96)01077-9

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).