ACCURATE MEASUREMENT OF THE ROCKING CURVE OF A PLANAR COMPOUND REFRACTIVE LENS FOR SYNCHROTRON RADIATION FOCUSING

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We present the results of the first measurement of the rocking curve of a nanofocusing compound refractive lens made of silicon, used for focusing synchrotron radiation (SR) at the "KISI-Kurchatov" source. The obtained curve is accurately approximated by a Gaussian function, and its width agrees with a previously developed analytical theory describing SR propagation in multi-element focusing systems. The results demonstrate the feasibility of using the rocking curve as an alignment characteristic of the experimental setup when working with silicon lenses at second-generation SR sources.

About the authors

M. S Folomeshkin

National Research Centre "Kurchatov Institute"

Email: folmaxim@gmail.com
Moscow, Russia

V. G Kohn

National Research Centre "Kurchatov Institute"

Moscow, Russia

A. Yu Seregin

National Research Centre "Kurchatov Institute"

Moscow, Russia

Yu. A Volkovsky

National Research Centre "Kurchatov Institute"

Moscow, Russia

P. A Prosekov

National Research Centre "Kurchatov Institute"

Moscow, Russia

V. A Yunkin

Institute of Microelectronics Technology and High-Purity Materials RAS

Chernogolovka, Russia

A. A Snigirev

Immanuel Kant Baltic Federal University

Kaliningrad, Russia

A. E Blagov

National Research Centre "Kurchatov Institute"

Moscow, Russia

References

  1. Snigirev A., Kohn V., Snigireva I., Lengeler B. // Nature. 1996. V. 384. P. 49. https://doi.org/10.1038/384049a0
  2. Ковальчук М.В., Благов А.Е., Нарайкин О.С. и др. // Кристаллография. 2022. Т. 67. № 5. С. 726. https://doi.org/10.31857/S0023476122050071
  3. Кон В.Г. // Письма в ЖЭТФ. 2002. Т. 76. № 10. С. 701.
  4. Кон В.Г. // ЖЭТФ. 2003. Т. 124. № 1. С. 234.
  5. Кон В.Г. // Поверхность. Рентген., синхротр. и нейтр. исслед. 2009. № 5. С. 62.
  6. Kohn V.G. // J. Synchrotron Radiat. 2012. V. 19. P. 84. https://doi.org/10.1107/S0909049511045778
  7. Kohn V.G. // J. Synchrotron Radiat. 2017. V. 24. P. 609. https://doi.org/10.1107/S1600577517005318
  8. Snigireva I.I., Kohn V.G., Snigirev A.A. // Proc. SPIE. 2004. V. 5539. P. 218. https://doi.org/10.1117/12.564269
  9. Kohn V.G. // J. Synchrotron Radiat. 2018. V. 25. P. 1634. https://doi.org/10.1107/S1600577518012675
  10. Yunkin V., Grigoriev M.V., Kuznetsov S. et al. // Proc. SPIE. 2004. V. 5539. P. 226. https://doi.org/10.1117/12.563253
  11. Snigirev A., Snigireva I., Kohn V. et al. // Phys. Rev. Lett. 2009. V. 103. P. 064801. https://doi.org/10.1103/PhysRevLett.103.064801
  12. Фоломешкин М.С., Кон В.Г., Серёгин А.Ю. и др. // Кристаллография. 2023. Т. 68. № 1. С. 5. https://doi.org/10.31857/S0023476123010071
  13. Sorokovikov M.N., Zverev D.A., Barannikov A.A. et al. // Nanobiotechnology Reports. 2023. V. 18. Suppl. 1. P. S210. https://doi.org/10.1134/S2635167623601183
  14. Фоломешкин М.С., Кон В.Г., Серёгин А.Ю. и др. // Кристаллография. 2024. Т. 69. № 6. С. 919. https://doi.org/10.31857/S0023476124060017
  15. Koн В.Г. // 2025. https://kohnvict.ucoz.ru/jsp/1-crlpar.htm
  16. Кон В.Г., Просеков П.А., Серегин А.Ю. и др. // Кристаллография. 2019. Т. 64. № 1. С. 29. https://doi.org/10.1134/S0023476119010144

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).