CRYSTALLOCHEMICAL FEATURES OF Ti- AND Sb-RICH NEZILOVITE

Cover Page

Cite item

Full Text

Abstract

A variety of the mineral nezilovite, containing antimony and an elevated amount of titanium, has been studied using microprobe and X-ray diffraction analysis. The diffraction experiment was performed on a crystal presenting an aggregate of nezilovite and högbomite with close unit-cell parameters. The parameters of the hexagonal cell of the nezilovite studied are a = 5.8855(2) Å, c = 23.092(1) Å, V = 692.73 (4) Å3,sp. gr. P63/mmc. The structural model is refined using a limited number of unique reflections 231F > 4σ(F) to R = 0.08. The crystallochemical formula is (Z = 2) PbZn2(Ti0.9Al0.1)(Al0.6Sb )Mn Fe O18.5(O,OH)0.5. The distribution of cations of this composition over structure sites is established. A basis of the mineral structure is a set of spinel layers, consisting of edge-sharing Fe3+ octahedra. They alternate with two heteropolyhedral layers: Zn tetrahedra combine (Al,Sb) octahedra in one layer, and five-vertex Ti polyhedra combine dimers of Mn3+ octahedra in the other layer.

About the authors

R. K. Rastsvetaeva

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia

Email: rast@crys.ras.ru
Россия, Москва

V. M. Gridchina

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: rast@crys.ras.ru
Россия, Москва

D. A. Varlamov

Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432 Russia

Email: rast@crys.ras.ru
Россия, Черноголовка

S. Jancev

University of Saints Cyril and Methodius, Skopje, Republic of North Macedonia

Author for correspondence.
Email: rast@crys.ras.ru
Республика Северная Македония, Скопье

References

  1. Chukanov N.V., Jančev S., Pekov I.V. // Macedonian J. Chem. 2015. V. 34. № 1. P. 115. https://doi.org/10.20450/mjcce.2015.612
  2. Ермолаева В.Н., Варламов Д.А., Янчев С., Чуканов Н.В. // Записки РМО. 2018. Ч. 147. № 3. С. 27. https://doi.org/10.30695/zrmo/2018.1473.02
  3. Чуканов Н.В., Воробей С.С., Ермолаева В.Н. и др. // Записки РМО. 2018. Ч. 147. № 3. С. 44. https://doi.org/10.30695/zrmo/2018.1473.03
  4. Bermanec V., Holtstam D., Sturman D.et al. // Can. Mineral. 1996. V. 34. P. 1287.
  5. Hejny C., Armbruster Th. // Am. Mineral. 2002. V. 87. P. 277. https://doi.org/10.2138/am-2002-2-309
  6. Jančev S. // Geologica Macedonica. 2003. V. 17. № 1. P. 59.
  7. Rigaku Oxford Diffraction, 2022, CrysAlisPro Software system, version 1.171.42.80a, Rigaku Oxford Diffraction, Yarnton, UK.
  8. Андрианов В.И. // Кристаллография. 1989. Т. 34. Вып. 3. С. 592.
  9. Brown I.D., Altermatt D. // Acta Cryst. B. 1985. V. 41. P. 244. https://doi.org/10.1107/S0108768185002063
  10. Расцветаева Р.К., Аксенов С.М., Верин И.А. // Dokl. Chem. 2010. V. 434. P. 233. https://doi.org/10.1134/S0012500810090065

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (278KB)
3.

Download (746KB)
4.

Download (759KB)
5.

Download (744KB)

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).