TRACK IDENTIFICATION AND ESTIMATION OF ORBITS PARAMETERS OF MAN-MADE SPACE OBJECTS FIRST DETECTED BY TELESCOPES
- Авторлар: Kolessa A.E.1,2, Kolessa E.A.1,2
-
Мекемелер:
- Moscow Institute of Physics and Technology
- PJSC VYMPEL
- Шығарылым: Том 63, № 6 (2025)
- Беттер: 674–686
- Бөлім: Articles
- URL: https://ogarev-online.ru/0023-4206/article/view/361962
- DOI: https://doi.org/10.7868/S3034550225060094
- ID: 361962
Дәйексөз келтіру
Аннотация
The paper considers the problem of identifying pairs of tracks of near-Earth space objects that are absent from orbital databases and independently observed by one or several optical telescopes in one or many observation sessions. An algorithm for preliminary rejection of pairs of tracks — candidates for identification based on estimates of motion invariants is proposed. An exact solution to the problem of identifying two tracks is obtained using the generalized likelihood ratio method. A new algorithm for estimating orbital parameters (in the absence of a priori orbital data) is proposed for one or two optical tracks, between which there may be a long time gap.
Авторлар туралы
A. Kolessa
Moscow Institute of Physics and Technology; PJSC VYMPELMoscow, Russia
E. Kolessa
Moscow Institute of Physics and Technology; PJSC VYMPEL
Email: kolessa.ea@phystech.edu
Moscow, Russia
Әдебиет тізімі
- Kolessa A.E., Tartakovsky A.G., Ivanov A.P. et al. Nonlinear Estimation and Decision-making Methods in Short Track Identification and Orbit Determination Problem // IEEE Transactions on Aerospace and Electronic Systems. 2020. V. 56. Iss. 1. P. 301–312. https://doi.org/10.1109/TAES.2019.2911760
- Chang C.-B. Ballistic Trajectory Estimation with Angle-Only Measurement // 18th IEEE Conf. on Decision and Control. 1979. P. 632–637.
- Fujimoto K., Scheeres D. Short-Arc Correlation and Initial Orbit Determination For Space-Based Observations // Proc. Advanced Maui Optical and Space Surveillance Technologies Conference. USA, Hawaii, Wailea, Maui. September 13–16, 2011.
- Milani A., Gronchi G.F., Vitturi M.D.M. et al. Orbit determination with very short arcs. I admissible regions // Celestial Mech Dyn Astr. 2004. V. 90. P. 57–85. https://doi.org/10.1007/s10569-004-6593-5
- Jazwinski A.H. Stochastic Processes and Filtering Theory. New York: Academic Press, 1970.
- Kolessa A.E., Ivanov V.N., Radchenko V.A. Searching of Unknown Earth-Orbiting Object in the Next Observation Session // Proc. 2014 International Conference on Engineering and Telecommunication. 2014. P. 33–37. https://doi.org/10.1109/En.T.2014.16
- Brent R.P. Algorithms for Minimization without Derivatives. Mineola, New York: Dover Publications, 2002 and 2013.
- Охоцимский Д.Е., Сихарулидзе Ю.Г. Основы механики космического полета: Учеб. пособие. М.: Наука. Гл. ред. Физ.-мат. Лит., 1990. 448 с. ISBN 5-02-014090-2.
- Wilks S.S. The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses // Ann. Math. Statist. 1938. V. 9. Iss. 1. P. 60–62. https://doi.org/10.1214/aoms/1177732360
- Колесса Е.А. Определение области поиска в следующем сеансе наблюдения впервые обнаруженного космического объекта с применением оптического стереонаблюдения // Труды Московского физико-технического института (национального исследовательского университета). 2025. Т. 17. № 1(65). С. 76–88.
Қосымша файлдар

