TRACK IDENTIFICATION AND ESTIMATION OF ORBITS PARAMETERS OF MAN-MADE SPACE OBJECTS FIRST DETECTED BY TELESCOPES

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper considers the problem of identifying pairs of tracks of near-Earth space objects that are absent from orbital databases and independently observed by one or several optical telescopes in one or many observation sessions. An algorithm for preliminary rejection of pairs of tracks — candidates for identification based on estimates of motion invariants is proposed. An exact solution to the problem of identifying two tracks is obtained using the generalized likelihood ratio method. A new algorithm for estimating orbital parameters (in the absence of a priori orbital data) is proposed for one or two optical tracks, between which there may be a long time gap.

Авторлар туралы

A. Kolessa

Moscow Institute of Physics and Technology; PJSC VYMPEL

Moscow, Russia

E. Kolessa

Moscow Institute of Physics and Technology; PJSC VYMPEL

Email: kolessa.ea@phystech.edu
Moscow, Russia

Әдебиет тізімі

  1. Kolessa A.E., Tartakovsky A.G., Ivanov A.P. et al. Nonlinear Estimation and Decision-making Methods in Short Track Identification and Orbit Determination Problem // IEEE Transactions on Aerospace and Electronic Systems. 2020. V. 56. Iss. 1. P. 301–312. https://doi.org/10.1109/TAES.2019.2911760
  2. Chang C.-B. Ballistic Trajectory Estimation with Angle-Only Measurement // 18th IEEE Conf. on Decision and Control. 1979. P. 632–637.
  3. Fujimoto K., Scheeres D. Short-Arc Correlation and Initial Orbit Determination For Space-Based Observations // Proc. Advanced Maui Optical and Space Surveillance Technologies Conference. USA, Hawaii, Wailea, Maui. September 13–16, 2011.
  4. Milani A., Gronchi G.F., Vitturi M.D.M. et al. Orbit determination with very short arcs. I admissible regions // Celestial Mech Dyn Astr. 2004. V. 90. P. 57–85. https://doi.org/10.1007/s10569-004-6593-5
  5. Jazwinski A.H. Stochastic Processes and Filtering Theory. New York: Academic Press, 1970.
  6. Kolessa A.E., Ivanov V.N., Radchenko V.A. Searching of Unknown Earth-Orbiting Object in the Next Observation Session // Proc. 2014 International Conference on Engineering and Telecommunication. 2014. P. 33–37. https://doi.org/10.1109/En.T.2014.16
  7. Brent R.P. Algorithms for Minimization without Derivatives. Mineola, New York: Dover Publications, 2002 and 2013.
  8. Охоцимский Д.Е., Сихарулидзе Ю.Г. Основы механики космического полета: Учеб. пособие. М.: Наука. Гл. ред. Физ.-мат. Лит., 1990. 448 с. ISBN 5-02-014090-2.
  9. Wilks S.S. The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses // Ann. Math. Statist. 1938. V. 9. Iss. 1. P. 60–62. https://doi.org/10.1214/aoms/1177732360
  10. Колесса Е.А. Определение области поиска в следующем сеансе наблюдения впервые обнаруженного космического объекта с применением оптического стереонаблюдения // Труды Московского физико-технического института (национального исследовательского университета). 2025. Т. 17. № 1(65). С. 76–88.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).