The Significance of Input Features for Domain Adaptation of Spacecraft Data

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The problem of improving the neural network forecast of geomagnetic index Dst under conditions in which the input data for such a forecast are measured by two spacecraft, one of which is close to the end of its life cycle, and the data history of the other is not yet enough to construct a neural network forecast of the required quality. For an efficient transition from the data of one spacecraft to the data of another, it is necessary to use methods of domain adaptation. This paper tests and compares several data translation methods. Also, for each translated attribute, an optimal set of parameters for its translation were found, which further reduces the difference between domains. The paper shows that the use of domain adaptation methods with the selection of significant features can improve the forecast compared to the results of using untranslated data.

Авторлар туралы

E. Karimov

Faculty of Physics, Moscow State University, 119991, Moscow, Russia; Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119991, Moscow, Russia

Email: Karimov.ez19@physics.msu.ru
Россия, Москва; Россия, Москва

I. Myagkova

Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119991, Moscow, Russia

Email: Dolenko@srd.sinp.msu.ru
Россия, Москва

V. Shirokiy

Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119991, Moscow, Russia

Email: Dolenko@srd.sinp.msu.ru
Россия, Москва

O. Barinov

Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119991, Moscow, Russia

Email: Dolenko@srd.sinp.msu.ru
Россия, Москва

S. Dolenko

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: dolenko@srd.sinp.msu.ru
Moscow, 119991 Russia

Әдебиет тізімі

  1. Daglis I.A. Space Storms and Space Weather Hazards. Dordrecht: Kluwer Academic Publishers, 2001.
  2. Cole D.G. Space weather: Its effects and predictability // Space Science Reviews. 2003. V. 107. P. 295–302. https://doi.org/10.1023/A:1025500513499
  3. Vassiliadis D. Forecasting space weather // Space Weather: Physics and Effects. Berlin; Heidelberg: Springer Praxis Books, 2007. P. 403–425. https://doi.org/10.1007/978-3-540-34578-7_14
  4. Kudela K. Space weather near Earth and energetic particles: selected results // J. Physics: Conf. Series. 2013. V. 409. Iss. 1. Art. ID. 012017. https://doi.org/10.1088/1742-6596/409/1/012017
  5. Schrijver C.J., Kauristie K., Aylward A.D. et al. Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS // Advances in Space Research. 2015. V. 55. Iss. 12. P. 2745–2807. https://doi.org/10.1016/j.asr.2015.03.023
  6. McGranaghan R.M., Camporeale E., Georgoulis M. et al. Space Weather research in the Digital Age and across the full data lifecycle: Introduction to the Topical Issue // J. Space Weather and Space Climate. 2021. V. 11. Art. ID. 50. https://doi.org/10.1051/swsc/2021037
  7. Лазутин Л.Л. Мировые и полярные магнитные бури / Под ред. проф. Ю.И. Логачева. М.: МГУ, 2012. 214 с.
  8. Qiu Q., Fleeman J.A., Ball D.R. Geomagnetic disturbance: A comprehensive approach by American electric power to address the impacts / IEEE Electrification Magazine. 2015. V. 3. Iss. 4. P. 22–33. https://doi.org/10.1109/MELE.2015.2480615
  9. Белаховский В.Б., Пилипенко В.А., Сахаров Я.А. и др. Рост геомагнитно-индуцированных токов во время корональных выбросов массы и высокоскоростных потоков солнечного ветра геомагнитных бурь в 2021 году // Изв. РАН. Сер. Физическая. 2023. Т. 87. № 2. С. 271–277. , EDN: AITPFOhttps://doi.org/10.31857/S0367676522700478
  10. Friedel R.H., Reeves W.G.P., Obara T. Relativistic electron dynamics in the inner magnetosphere: A review // J. Atmospheric and Solar-Terrestrial Physics. 2002. V. 64. Iss. 2. P. 265–283. https://doi.org/10.1016/S1364-6826(01)00088-8
  11. Kataoka R., Miyoshi Y. Average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit // Annales Geophysicae. 2008. V. 26. Iss. 6. P. 1335–1339. https://doi.org/10.5194/angeo-26-1335-2008
  12. Мягкова И.Н., Шугай Ю.С., Веселовский И.С. и др. Сравнительный анализ влияния рекуррентных высокоскоростных потоков солнечного ветра на радиационное состояние околоземного космического пространства в апреле–июле 2010 года // Астрон. вестн. 2013. Т. 47. № 2. С. 141–155. https://doi.org/10.7868/S0320930X13020060
  13. Белов А.В., Виллорези Дж., Дорман Л.И. и др. Влияние космической среды на функционирование искусственных спутников Земли // Геомагнетизм и аэрономия. 2004. Т. 44. № 4. С. 502–510.
  14. Романова Н.В., Пилипенко В.А., Ягова Н.В. и др. Статистическая связь частоты сбоев на геостационарных спутниках с потоками энергичных электронов и протонов // Косм. исслед. 2005. Т. 43. № 3. С. 186–193.
  15. Summers D., Stone S. Analysis of radiation belt “killer” electron energy spectra // J. Geophysical Research: Space Physics. 2022. V. 127. Iss. 9. Art. ID. e2022JA030698. https://doi.org/10.1029/2022JA030698
  16. Akasofu S.-I., Chapman S. Solar-Terrestrial Physics. Oxford: Clarendon Press, 1972. 901 p.
  17. Riazantseva M.O., Dalin P.A., Dmitriev A.V. et al. A multifactor analysis of parameters controlling solar wind ion flux correlations using an artificial neural network technique // J. Atmospheric and Solar-Terrestrial Physics. 2002. V. 64. Iss. 5–6. P. 657–660. https://doi.org/10.1016/S1364-6826(02)00026-3
  18. Burton R.K., McPherron R.L., Russell C.T. An empirical relationship between interplanetary conditions and Dst // J. Geophysical Research. 1975. V. 80. P. 4204–4214.
  19. Ефиторов А.О., Мягкова И.Н., Широкий В.Р. и др. Прогнозирование Dst-индекса, основанное на методах машинного обучения // Косм. исслед. 2018. Т. 56. № 6. С. 353–364. https://doi.org/10.31857/S002342060002493-0
  20. Мягкова И.Н., Широкий В.Р., Владимиров Р.Д. и др. Прогнозирование значений геомагнитного индекса Dst при помощи адаптивных методов // Метеорология и гидрология. 2021. № 3. С. 38–46. https://doi.org/10.52002/0130-2906-2021-3-38-46
  21. Myagkova I., Shiroky V., Dolenko S. Prediction of geomagnetic indexes with the help of artificial neural networks // E3S Web of Conferences. 2017. V. 20. Art. ID. 02011. 7 p. https://doi.org/10.1051/e3sconf/20172002011

Қосымша файлдар


© Э.З. Каримов, И.Н. Мягкова, В.Р. Широкий, О.Г. Баринов, С.А. Доленко, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».