FUNCTIONALIZED ALCOXYSILANES AS A KEY TO EFFICIENT SYNTHESIS OF COMPOSITE Au@SiO2 CORE-SHELL NANOPARTICLES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Composite nanoparticles (CNPs) with a core of a noble metal (Au, Ag) and a silica shell serving as a carrier for different target compounds are of considerable interest for solving various applied problems, including the tumor theranostics, the creation of highly sensitive sensors, super-bright emitters (including nanolasers) and different metamaterials. The conventional precursor in the synthesis of such shells is tetraethoxysilane (TEOS), which is characterized by low affinity for the surface of metal cores and poor solubility in water. In addition, as a result of the hydrolytic condensation of TEOS, a dense network of Si–O–Si bonds is formed, which negatively affects the shell capacity for the target compound. All these drawbacks significantly complicate both the obtaining of CNPs and their subsequent loading. In this paper, the possibilities and advantages of alternative approaches to the creation of CNPs based on the replacement of TEOS with functionalized alkoxysilanes are analyzed. The main attention is paid to particles obtained using γ-mercaptopropyltrimethoxysilane.

About the authors

M. E. Kartseva

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Moscow, Russia

D. M. Kravchinskiy

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Moscow, Russia

O. V. Dement'eva

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: dema_ol@mail.ru
Moscow, Russia

References

  1. Liz-Marzán L.M., Giersig M., Mulvaney P. Synthesis of nanosized gold-silica core-shell particles // Langmuir. 1996. V. 12. № 18. P. 4329–4335. https://doi.org/10.1021/la9601871
  2. Chen Y.-S., Frey W., Kim S., Homan K., Kruizinga P., Sokolov K., Emelianov S., Yguerabide J., Yguerabide E.E. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy // Opt. Express. 2010. V. 18. № 9. P. 8867–8878. https://doi.org/10.1364/OE.18.008867
  3. Chen Y., Xu C., Cheng Y., Cheng Q. Photostability enhancement of silica-coated gold nanostars for photoacoustic imaging guided photothermal therapy // Photoacoustics. 2021. V. 23. P. 100284. https://doi.org/10.1016/j.pacs.2021.100284
  4. Moreira A.F., Rodrigues C.F., Reis C.A., Costa E.C., Correia I.J. Gold-core silica shell nanoparticles application in imaging and therapy: A review // Micropor. Mesopor. Mater. 2018. V. 270. P. 168–179. https://doi.org/10.1016/j.micromeso.2018.05.022
  5. Ye J., Chen Z., Chen W., Zhao Y., Ding C., Huang Y. Gold nanoparticles coated with silica shells as high performance fluorescence nanoprobe // ACS Appl. Nano Mater. 2024. V. 7. № 5. P. 5543–5553. https://doi.org/10.1021/acsanm.4c00243
  6. Chen Y.S., Frey W., Kim S., Kruizinga P., Homan K., Emelianov S. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers // Nano Lett. 2011. V. 11. № 2. P. 348–354. https://doi.org/10.1021/nl1042006
  7. Xie C., Kang P., Youn J., Wilson B.A., Zhang T., Basavarajappa L., Wang Q. Kim M., Li L., Hoyt K., Randrianalisoa J.H., Qin Z. Mechanism of amplified photoacoustic effect for silica-coated spherical gold nanoparticles // Nano Lett. 2025. V. 25. № 3. P. 1133–1141. https://doi.org/10.1021/acs.nanolett.4c05558
  8. Li J.-F., Zhang Y.-J., Ding S.-Y., Panneerselvam R., Tian Z.-Q. Core–Shell nanoparticle-enhanced raman spectroscopy // Chem. Rev. 2017. V. 117. № 7. P. 5002–5069. https://doi.org/10.1021/acs.chemrev.6b00596
  9. Hammond-Pereira E., Bryant K., Graham T.R., Yang C., Mergelsberg S., Wu D., Saunders S.R. Mesoporous silica-encapsulated gold core–shell nanoparticles for active solvent-free benzyl alcohol oxidation // React. Chem. Eng. 2020. V. 5. № 10. P. 1939–1949. https://doi.org/10.1039/D0RE00198H
  10. Дементьева О.В., Карцева М.Е. Наночастицы благородных металлов в биомедицинской термоплазмонике / Коллоид. журн. 2023. Т 85. № 4. С. 424–442. https://doi.org/10.31857/S0023291223600384
  11. Quandt A., Wamwangi D., Kumalo S. The use of core-shell nanoparticles in photovoltaics // Photonics. 2025. V. 12. № 6. P. 555. https://doi.org/10.3390/photonics12060555
  12. Si S., Majumda A.G., Mohanty P.S. Silica-coated gold nanorods (AuNR@SiO2): Synthesis, properties and applications in biomedicine and beyond // BioNanoSci. 2025. V. 15. P. 185. https://doi.org/10.1007/s12668-025-01801-0
  13. Kim M.J., Jung D.H., Lee C.Y., Hong S., Heo J.H., Lee J.H. Structurally engineered silica shells on gold nanorods for biomedical applications // Small Struct. 2023. V. 4. № 9. P. 2300047. https://doi.org/10.1002/sstr.202300047
  14. Gorelikov I., Matsuura N. Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles // Nano Lett. 2008. V. 8. № 1. P. 369–373. https://doi.org/10.1021/nl0727415
  15. Gautier C., Cunningham A., Si-Ahmed L., Robert G. Bürgi T. Pigments based on silica-coated gold nanorods: Synthesis, colouring strength, functionalisation, extrusion, thermal stability and colour evolution // Gold Bull. 2010. V. 43. P. 94–104. https://doi.org/10.1007/BF03214974
  16. Pellas V., Blanchard J., Guibert C., Krafft J.-M., Miche A., Salmain M., Boujday S. Gold nanorod coating with silica shells having controlled thickness and oriented porosity: tailoring the shells for biosensing // ACS Appl. Nano Mater. 2021. V. 4. № 9. P. 9842–9854. https://doi.org/10.1021/acsanm.1c02297
  17. Jia Y.P., Shi K., Liao J.F., Peng J.R., Hao Y., Qu Y., Chen L.J., Liu L., Yuan X., Qian Z.Y., Wei X.W. Effects of cetyltrimethylammonium bromide on the toxicity of gold nanorods both in vitro and in vivo: molecular origin of cytotoxicity and inflammation // Small Methods. 2020. V. 4. № 3. P. 1900799. https://doi.org/10.1002/smtd.201900799
  18. Croissant J.G., Fatieiev Y., Almalik A., Khashab N.M. Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications // Adv. Healthcare Mater. 2018. V. 7. № 4. P. 1700831. https://doi.org/10.1002/adhm.201700831
  19. Fan W., Lu N., Shen Z., Tang W., Shen B., Cui Z., Shan L., Yang Z., Wang Z., Jacobson O., Zhou Z., Liu Y., Hu P., Yang W., Song J., Zhang Y., Zhang L., Khashab N.M., Aronova M.A., Lu G., Chen X. Generic synthesis of small-sized hollow mesoporous organosilica nanoparticles for oxygen independent X-ray-activated synergistic therapy // Nat. Commun. 2019. V. 10. P. 1241. https://doi.org/10.1038/s41467-019-09158-1
  20. Higashi Y., Matsumoto K., Saitoh H., Shiro A., Ma Y., Laird M., Chinnathambi S., Birault A., Doan T.L.H., Yasuda R., Tajima T., Kawachi T., Tamanoi F. Iodine containing porous organosilica nanoparticles trigger tumor spheroids destruction upon monochromatic X-ray irradiation: DNA breaks and K-edge energy X-ray // Sci. Rep. 2021. V. 11. P. 14192. https://doi.org/10.1038/s41598-021-93429-9
  21. Tamanoi F., Chinnathambi S., Laird M., Komatsu A., Birault A., Takata T., Doan T.L.-H., Mai N.X.D., Raitano A., Morrison K., Suzuki M., Matsumoto K. Construction of boronophenylalanine-loaded biodegradable periodic mesoporous organosilica nanoparticles for BNCT cancer therapy // Int. J. Mol. Sci. 2021. V. 22. № 5. P. 2251. https://doi.org/10.3390/ijms22052251
  22. Hock N., Racaniello G.F., Aspinall S., Denora N., Khutoryanskiy V.V., Bernkop-Schnürch A. Thiolated nanoparticles for biomedical applications: mimicking the workhorses of our body // Adv. Sci. 2022. V. 9. № 1. P. 2102451. https://doi.org/10.1002/advs.202102451
  23. Walton N.I., Naha P.C., Cormode D.P., Zharov I. Mesoporous organosilica nanoparticles with internal metal-chelating groups: transition metal uptake and Gd3+ relaxivity // ChemistrySelect. 2023. V. 8. № 24. P. e202301454. https://doi.org/10.1002/slct.202301454
  24. Huang Y., Zhang C., Zhang L., Chen X., Fan W. Chemical synthesis and multihybridization of small-sized hollow mesoporous organosilica nanoparticles toward advanced theranostics // Acc. Chem. Res. 2024. V. 57. № 24. P. 3465–3477. https://doi.org/10.1021/acs.accounts.4c00502
  25. Tetour D., Novotná M., Tatýrek J., Máková V., Stuchlík M., Hobbs C., Řezanka M., Müllerová M., Setnička V., Dobšíkovád K., Hodačová J. Preparations of spherical nanoparticles of chiral Cinchona alkaloid-based bridged silsesquioxanes and their use in heterogeneous catalysis of enantioselective reactions // Nanoscale. 2024. V. 16. № 13. P. 6696–6707. https://doi.org/10.1039/D3NR06234A
  26. Gao M., Zeng J., Liang K., Zhao D., Kong B. Interfacial assembly of mesoporous silica-based optical heterostructures for sensing applications // Adv. Funct. Mater. 2020. V. 30. № 9. P. 1906950. https://doi.org/10.1002/adfm.201906950
  27. Li H., Chen X., Shen D., Wu F., Pleixats R., Pan J. Functionalized silica nanoparticles: classification, synthetic approaches and recent advances in adsorption applications // Nanoscale. 2021. V. 13. № 38. P. 15998–16016. https://doi.org/10.1039/D1NR04048K
  28. Zhang X., Zhang H., Liu X., Wang J., Li S., Gao P. Review and future perspectives of stimuli-responsive bridged polysilsesquioxanes in controlled release applications // Polymers. 2024. V. 16. № 22. P. 3163. https://doi.org/10.3390/polym16223163
  29. Koval’ I.V. Reactions of thiols // Rus. J. Organic Chem. 2007. V. 43. P. 319–346. https://doi.org/10.1134/S1070428007030013
  30. Ways T.M.M., Ng K.W., Lau W.M., Khutoryanskiy V.V. Silica nanoparticles in transmucosal drug delivery // Pharmaceutics. 2020. V. 12. № 8. P. 751. https://doi.org/10.3390/pharmaceutics12080751
  31. Rasool N., Negi D., Singh Y. Thiol-functionalized, antioxidant, and osteogenic mesoporous silica nanoparticles for osteoporosis // ACS Biomater. Sci. Eng. 2023. V. 9. № 6. P. 3535–3545. https://doi.org/10.1021/acsbiomaterials.3c00479
  32. Sierra I., Peґrez-Quintanilla D. Heavy metal complexation on hybrid mesoporous silicas: an approach to analytical applications // Chem. Soc. Rev. 2013. V. 42. № 9. P. 3792–3807. https://doi.org/10.1039/C2CS35221D
  33. Soldatović T.V. Application of the principle of hard and soft acids and bases to mechanisms of bioinorganic reactions // Natural Science. 2018. P. 134.
  34. Ni D., Jiang D., Ehlerding E.B., Huang P., Cai W. Radiolabeling silica-based nanoparticles via coordination chemistry: basic principles, strategies, and applications // Acc. Chem. Res. 2018. V. 51. № 3. P. 778–788. https://doi.org/10.1021/acs.accounts.7b00635
  35. Zhang J., Weng L., Su X., Lu G., Liu W., Tang Y., Zhang Y., Wen J., Teng Z., Wang L. Cisplatin and doxorubicin high-loaded nanodrug based on biocompatible thioether- and ethane-bridged hollow mesoporous organosilica nanoparticles // J. Colloid Interface Sci. 2018. V. 513. P. 214–221. https://doi.org/10.1016/j.jcis.2017.10.116
  36. Varache M., Bezverkhyy I., Weber G., Saviot L., Chassagnon R., Baras F., Bouyer F. Loading of cisplatin into mesoporous silica nanoparticles: Effect of surface functionalization // Langmuir. 2019. V. 35. № 27. P. 8984–8995. https://doi.org/10.1021/acs.langmuir.9b00954
  37. Moghaddam S.P.H., Saikia J., Yazdimamaghani M., Ghandehari H. Redox-responsive polysulfide-based biodegradable organosilica nanoparticles for delivery of bioactive agents // ACS Appl. Mater. Interfaces 2017. V. 9. № 25. P. 21133–21146. https://doi.org/10.1021/acsami.7b04351
  38. Li Y., Lin J., Wang P., Zhu F., Wu M., Luo Q., Zhang Y., Liu X. Tumor microenvironment-responsive yolk–shell NaCl@virus-inspired tetrasulfide-organosilica for ion-interference therapy via osmolarity surge and oxidative stress amplification // ACS Nano. 2022. V. 16. № 5. P. 7380–7397. https://doi.org/10.1021/acsnano.1c09496
  39. Shao D., Zhang F., Chen F., Zheng X., Hu H., Yang C., Tu Z., Wang Z., Chang Z., Lu J., Li T., Zhang Y., Chen L., Leong K.W., Dong W.-F. Biomimetic diselenide-bridged mesoporous organosilica nanoparticles as an X-ray-responsive biodegradable carrier for chemo-immunotherapy // Adv. Mater. 2020. V. 32. № 50. P. 2004385. https://doi.org/10.1002/adma.202004385
  40. Hall S.R., Davis S.A., Mann S. Cocondensation of organosilica hybrid shells on nanoparticle templates: A direct synthetic route to functionalized core-shell colloids // Langmuir. 2000. V. 16. № 3. P. 1454–1456. https://doi.org/10.1021/la9909143
  41. Cui Y., Zheng X.-S., Ren B., Wang R., Zhang J., Xia N.-S., Tian Z.-Q. Au@organosilica multifunctional nanoparticles for the multimodal imaging // Chem. Sci. 2011. V. 2. № 8. P. 1463 –1469. https://doi.org/10.1039/C1SC00242B
  42. Gao Y., Li Y., Wang Y., Chen Y., Gu J., Zhao W., Ding J., Shi J. Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection // Small. 2015. V. 11. № 1. P. 77–83. https://doi.org/10.1002/smll.201402149
  43. Gao Y., Li Y., Chen J., Zhu S., Liu X., Zhou L., Shi P., Niu D., Gu J., Shi J. Multifunctional gold nanostar-based nanocomposite: Synthesis and application for noninvasive MR-SERS imaging-guided photothermal ablation // Biomaterials. 2015. V. 60. P. 31–41. https://doi.org/10.1016/j.biomaterials.2015.05.004
  44. Lai S., Centi S., Borri C., Ratto F., Cavigli L., Micheletti F., Kemper B., Ketelhut S., Kozyreva T., Gonnelli L., Rossi F., Colagrande S., Pini R. A multifunctional organosilica cross-linker for the bio-conjugation of gold nanorods // Colloids Surf. B. 2017. V. 157. P. 174–181. https://doi.org/10.1016/j.colsurfb.2017.05.068
  45. Simonenko A.V., Burov A.M., Khanadeev V.A. Nanocomposites based on gold nanostars with a hollow silica shell for controlled-release drug delivery // J. Biomed. Photon. Eng. 2024. V. 10. № 4. P. 040314. https://doi.org/10.18287/JBPE24.10.040314
  46. Салаватов Н.А., Дементьева О.В., Рудой В.М. Золотые наностержни с органокремнеземной оболочкой как платформа для создания многофункциональных наноструктур // Коллоид. журн. 2020. Т. 82. № 6. С. 733–739. https://doi.org/10.31857/S0023291220060129
  47. Салаватов Н.А., Большакова А.В., Морозов В.Н., Колыванова М.А., Исагулиева А.К., Дементьева О.В. Золотые наностержни с функционализированной органокремнеземной оболочкой: синтез и перспективы применения в тераностике опухолей // Коллоид. журн. 2022. Т. 84. № 1. C. 97–104. https://doi.org/10.31857/S0023291222010104
  48. Kartseva M.E., Kravchinskiy D.M., Morozov V.N., Staltsov M.S., Kuzmin V.A., Rudoy V.M., Dement’eva O.V. Plasmonic core/shell nanoparticles with grafted fluorophore: Synthesis and emission control // Opt. Mater. 2025. V. 159. P. 116674. https://doi.org/10.1016/j.optmat.2025.116674
  49. Yi D.K. Nanohybridization of silica-coated Au nanorods and silica nanoballs // J. Nanosci. Nanotechnol. 2011. V. 11. № 6. P. 5264–5269. https://doi.org/10.1166/jnn.2011.4177
  50. Mallick S., Sun I.-C., Kim K., Yi D.K. Silica coated gold nanorods for imaging and photo-thermal therapy of cancer cells // J. Nanosci. Nanotechnol. 2013. V. 13. № 5. P. 3223–3229. https://doi.org/10.1166/jnn.2013.7149
  51. Das M., Yi D.K. An S.S.A. Analyses of protein corona on bare and silica-coated gold nanorods against four mammalian cells // Int. J. Nanomed. 2015. V. 10. № 1. P. 1521–1545. https://doi.org/10.2147/IJN.S76187
  52. Vu D.T., Vu-Le T.T., Nguyen V.N., Le Q.M., Wang C.-R.C., Chau L.-K., Yang T.-S., Chan M.W.Y., Lee C.-I., Ting C.-C., Lin J.-Y., Kan H.-C., Hsu C.C. Gold nanorods conjugated upconversion nanoparticles nanocomposites for simultaneous bioimaging, local temperature sensing and photothermal therapy of OML-1 oral cancer cells // Int. J. Smart Nano Mater. 2021. V. 12. № 1. P. 49–71. https://doi.org/10.1080/19475411.2020.1839595
  53. Shah K.W., Sreethawong T., Liu S.-H., Zhang S.-Y., Tan L.S., Han M.-Y. Aqueous route to facile, efficient and functional silica coating of metal nanoparticles at room temperature // Nanoscale. 2014. V. 6. № 19. P. 11273–11281. https://doi.org/10.1039/C4NR03306J
  54. Беллами Л. Инфракрасные спектры сложных молекул. М.: Издательство иностранной литературы, 1963.
  55. Croissant J., Damien S., Maynadier M., Mongin O., Hugues V., Blanchard-Desce M., Cattoën X., Man M.W.C., Gallud A., Garcia M., Gary-Bobo M., Raehm L., Durand J.-O. Mixed periodic mesoporous organosilica nanoparticles and core–shell systems, application to in vitro two-photon imaging, therapy, and drug delivery // Chem. Mater. 2014. V. 26. № 24. P. 7214–7220. https://doi.org/10.1021/cm5040276
  56. Croissant J. Maynadier M., Mongin O., Hugues V., Blanchard-Desce M., Chaix A., Cattoën X., Man M.W.C., Gallud A., Gary-Bobo M., Garcia M., Raehm L., Durand J.-O. Enhanced two-photon fluorescence imaging and therapy of cancer cells via gold@bridged silsesquioxane nanoparticles // Small. 2015. V. 11. № 3. P. 295–299. https://doi.org/10.1002/smll.201401759
  57. Burke B.P., Baghdadi N., Kownacka A.E., Nigam S., Clemente G.S., Al-Yassiry M.M., Domarkas J., Lorch M., Pickles M., Gibbs P., Tripier R., Cawthorne C., Archibald S.J. Chelator free gallium-68 radiolabelling of silica coated iron oxide nanorods via surface interactions // Nanoscale. 2015. V. 7. № 36. P. 14889–14896. https://doi.org/10.1039/C5NR02753E
  58. Asselin J., Viger M.L., Boudreau D. Metal-enhanced fluorescence and FRET in multilayer core-shell nanoparticles // Adv. Chem. 2014. V. 2014. P. 812313. https://doi.org/10.1155/2014/812313
  59. Zvyagina A.I., Ezhov A.A., Meshkov I.N., Ivanov V.K., Birin K.P., König B., Gorbunova Y.G., Tsivadze A.Yu., Arslanov V.V., Kalinina M.A. Plasmon-enhanced light absorption at organic-coated interfaces: collectivity matters // J. Mater. Chem. C. 2018. V. 6. № 6. P. 1413–1420. https://doi.org/10.1039/C7TC04905F
  60. Звягина А.И., Ежов А.А., Кузьмина Н.В., Калинина М.А. “Нерезонансное” усиление оптического поглощения в органических пленках с плазмонными частицами // Коллоид. журн. 2021. Т. 83. № 5. С. 540–547. https://doi.org/10.31857/s0023291221050153
  61. Croissant J.G., Cattoёn X., Durand J.-O., Man M.W.C., Khashab N.M. Organosilica hybrid nanomaterials with high organic content: syntheses and applications of silsesquioxanes // Nanoscale. 2016. V. 8. № 48. P. 19945–19972. https://doi.org/10.1039/C6NR06862F
  62. Rahmani S., Chaix A., Aggad D., Hoang P., Moosa B., Garcia M., Gary-Bobo M., Charnay C., AlMalik A., Durand J.-O., Khashab N.M. Degradable gold core–mesoporous organosilica shell nanoparticles for two-photon imaging and gemcitabine monophosphate delivery // Mol. Syst. Des. Eng. 2017. V. 2. № 4. P. 380–383. https://doi.org/10.1039/C7ME00058H
  63. Li X., Wang X., Qiu H., Li S., Tse L.H.H., Lo W.-S., Lui K.-H., Zhou H., Gu Y., Wong W-T. Engineering optimal gold nanorod-loaded hollow mesoporous organosilica nanotheranostics for NIR-II photoacoustic microscopy imaging and tumor synergistic therapy // Chem. Eng. J. 2024. V. 498. P. 155310. https://doi.org/10.1016/j.cej.2024.155310
  64. Cheng D., Ji Y., Wang B., Wang Y., Tang Y., Fu Y., Xu Y., Qian X., Zhu W. Dual-responsive nanohybrid based on degradable silica-coated gold nanorods for triple-combination therapy for breast cancer // Acta Biomater. 2021. V. 128. P. 435–446. https://doi.org/10.1016/j.actbio.2021.04.006
  65. Liu P., Wang Y., Liu Y., Tan F., Li J., Li N. S-nitrosothiols loaded mini-sized Au@silica nanorod elicits collagen depletion and mitochondrial damage in solid tumor treatment // Theranostics. 2020. V. 10. № 15. P. 6774–6789. https://doi.org/10.7150/thno.42661
  66. Huang H., Xie Z., Li N., Zeng L., Zeng Q., Yang Z., Shen J., Yang H., Liu Y., Wu C. Biomimetic gold nano-modulator for deep-tumor NIR-II photothermal immunotherapy via gaseous microenvironment remodeling strategy // J. Nanobiotechnol. 2025. V. 23. P. 220. https://doi.org/10.1186/s12951-025-03304-2
  67. Lu Y., Wang Y., Li Y., Li Y., Jiang Y.-W., Li J. Golden tandem of photothermal ablation and simultaneous anti-inflammation in one nanoparticle for activated macrophage-targeted atherosclerosis treatment // Int. J. Nanomed. 2025. V. 20. P. 1731–1746. https://doi.org/10.2147/IJN.S503774
  68. Roberts J.M., Milo S., Metcalf D.G. Harnessing the power of our immune system: The antimicrobial and antibiofilm properties of nitric oxide // Microorganisms. 2024. V. 12. № 12. P. 2543. https://doi.org/10.3390/microorganisms12122543
  69. Zhao Z., Shan X., Zhang H., Shi X., Huang P., Sun J., He Z., Luo C., Zhang S. Nitric oxide-driven nanotherapeutics for cancer treatment // J. Control. Release. 2023. V. 362. P. 151–169. https://doi.org/10.1016/j.jconrel.2023.08.038
  70. Liu M., Chen L., Zhao Z., Liu M., Zhao T., Ma Y., Zhou Q., Ibrahim Y.S., Elzatahry A.A., Li X., Zhao D. Enzyme based mesoporous nanomotors with near-infrared optical brakes // J. Am. Chem. Soc. 2022. V. 144. № 9. P. 3892–3901. https://doi.org/10.1021/jacs.1c11749
  71. Chen M., Ma E., Xing Y., Xu H., Chen L., Wang Y., Zhang Y., Li J., Wang H., Zheng S. Dual-modal lateral flow test strip assisted by near-infrared-powered nanomotors for direct quantitative detection of circulating microrna biomarkers from serum // ACS Sens. 2023. V. 8. № 2. P. 757–766. https://doi.org/10.1021/acssensors.2c02315
  72. Zhou H., Liu Q., Chen M., Xie Y., Xu W., Zhang X., Jiang C., Dou P., Fang Z., Wang H., Zheng S. Urease-driven janus nanomotors for dynamic enrichment and multiplexed detection of bladder cancer microRNAs in urine // ACS Sens. 2025. V. 10. № 2. P. 1155–1165. https://doi.org/10.1021/acssensors.4c02996

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).