FUNCTIONALIZED ALCOXYSILANES AS A KEY TO EFFICIENT SYNTHESIS OF COMPOSITE Au@SiO2 CORE-SHELL NANOPARTICLES
- Authors: Kartseva M.E.1, Kravchinskiy D.M.1, Dement'eva O.V.1
-
Affiliations:
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
- Issue: Vol 87, No 6 (2025)
- Pages: 685–700
- Section: Articles
- Submitted: 27.01.2026
- Published: 15.11.2025
- URL: https://ogarev-online.ru/0023-2912/article/view/376455
- DOI: https://doi.org/10.7868/S3034543X25060086
- ID: 376455
Cite item
Abstract
About the authors
M. E. Kartseva
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscow, Russia
D. M. Kravchinskiy
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscow, Russia
O. V. Dement'eva
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: dema_ol@mail.ru
Moscow, Russia
References
- Liz-Marzán L.M., Giersig M., Mulvaney P. Synthesis of nanosized gold-silica core-shell particles // Langmuir. 1996. V. 12. № 18. P. 4329–4335. https://doi.org/10.1021/la9601871
- Chen Y.-S., Frey W., Kim S., Homan K., Kruizinga P., Sokolov K., Emelianov S., Yguerabide J., Yguerabide E.E. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy // Opt. Express. 2010. V. 18. № 9. P. 8867–8878. https://doi.org/10.1364/OE.18.008867
- Chen Y., Xu C., Cheng Y., Cheng Q. Photostability enhancement of silica-coated gold nanostars for photoacoustic imaging guided photothermal therapy // Photoacoustics. 2021. V. 23. P. 100284. https://doi.org/10.1016/j.pacs.2021.100284
- Moreira A.F., Rodrigues C.F., Reis C.A., Costa E.C., Correia I.J. Gold-core silica shell nanoparticles application in imaging and therapy: A review // Micropor. Mesopor. Mater. 2018. V. 270. P. 168–179. https://doi.org/10.1016/j.micromeso.2018.05.022
- Ye J., Chen Z., Chen W., Zhao Y., Ding C., Huang Y. Gold nanoparticles coated with silica shells as high performance fluorescence nanoprobe // ACS Appl. Nano Mater. 2024. V. 7. № 5. P. 5543–5553. https://doi.org/10.1021/acsanm.4c00243
- Chen Y.S., Frey W., Kim S., Kruizinga P., Homan K., Emelianov S. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers // Nano Lett. 2011. V. 11. № 2. P. 348–354. https://doi.org/10.1021/nl1042006
- Xie C., Kang P., Youn J., Wilson B.A., Zhang T., Basavarajappa L., Wang Q. Kim M., Li L., Hoyt K., Randrianalisoa J.H., Qin Z. Mechanism of amplified photoacoustic effect for silica-coated spherical gold nanoparticles // Nano Lett. 2025. V. 25. № 3. P. 1133–1141. https://doi.org/10.1021/acs.nanolett.4c05558
- Li J.-F., Zhang Y.-J., Ding S.-Y., Panneerselvam R., Tian Z.-Q. Core–Shell nanoparticle-enhanced raman spectroscopy // Chem. Rev. 2017. V. 117. № 7. P. 5002–5069. https://doi.org/10.1021/acs.chemrev.6b00596
- Hammond-Pereira E., Bryant K., Graham T.R., Yang C., Mergelsberg S., Wu D., Saunders S.R. Mesoporous silica-encapsulated gold core–shell nanoparticles for active solvent-free benzyl alcohol oxidation // React. Chem. Eng. 2020. V. 5. № 10. P. 1939–1949. https://doi.org/10.1039/D0RE00198H
- Дементьева О.В., Карцева М.Е. Наночастицы благородных металлов в биомедицинской термоплазмонике / Коллоид. журн. 2023. Т 85. № 4. С. 424–442. https://doi.org/10.31857/S0023291223600384
- Quandt A., Wamwangi D., Kumalo S. The use of core-shell nanoparticles in photovoltaics // Photonics. 2025. V. 12. № 6. P. 555. https://doi.org/10.3390/photonics12060555
- Si S., Majumda A.G., Mohanty P.S. Silica-coated gold nanorods (AuNR@SiO2): Synthesis, properties and applications in biomedicine and beyond // BioNanoSci. 2025. V. 15. P. 185. https://doi.org/10.1007/s12668-025-01801-0
- Kim M.J., Jung D.H., Lee C.Y., Hong S., Heo J.H., Lee J.H. Structurally engineered silica shells on gold nanorods for biomedical applications // Small Struct. 2023. V. 4. № 9. P. 2300047. https://doi.org/10.1002/sstr.202300047
- Gorelikov I., Matsuura N. Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles // Nano Lett. 2008. V. 8. № 1. P. 369–373. https://doi.org/10.1021/nl0727415
- Gautier C., Cunningham A., Si-Ahmed L., Robert G. Bürgi T. Pigments based on silica-coated gold nanorods: Synthesis, colouring strength, functionalisation, extrusion, thermal stability and colour evolution // Gold Bull. 2010. V. 43. P. 94–104. https://doi.org/10.1007/BF03214974
- Pellas V., Blanchard J., Guibert C., Krafft J.-M., Miche A., Salmain M., Boujday S. Gold nanorod coating with silica shells having controlled thickness and oriented porosity: tailoring the shells for biosensing // ACS Appl. Nano Mater. 2021. V. 4. № 9. P. 9842–9854. https://doi.org/10.1021/acsanm.1c02297
- Jia Y.P., Shi K., Liao J.F., Peng J.R., Hao Y., Qu Y., Chen L.J., Liu L., Yuan X., Qian Z.Y., Wei X.W. Effects of cetyltrimethylammonium bromide on the toxicity of gold nanorods both in vitro and in vivo: molecular origin of cytotoxicity and inflammation // Small Methods. 2020. V. 4. № 3. P. 1900799. https://doi.org/10.1002/smtd.201900799
- Croissant J.G., Fatieiev Y., Almalik A., Khashab N.M. Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications // Adv. Healthcare Mater. 2018. V. 7. № 4. P. 1700831. https://doi.org/10.1002/adhm.201700831
- Fan W., Lu N., Shen Z., Tang W., Shen B., Cui Z., Shan L., Yang Z., Wang Z., Jacobson O., Zhou Z., Liu Y., Hu P., Yang W., Song J., Zhang Y., Zhang L., Khashab N.M., Aronova M.A., Lu G., Chen X. Generic synthesis of small-sized hollow mesoporous organosilica nanoparticles for oxygen independent X-ray-activated synergistic therapy // Nat. Commun. 2019. V. 10. P. 1241. https://doi.org/10.1038/s41467-019-09158-1
- Higashi Y., Matsumoto K., Saitoh H., Shiro A., Ma Y., Laird M., Chinnathambi S., Birault A., Doan T.L.H., Yasuda R., Tajima T., Kawachi T., Tamanoi F. Iodine containing porous organosilica nanoparticles trigger tumor spheroids destruction upon monochromatic X-ray irradiation: DNA breaks and K-edge energy X-ray // Sci. Rep. 2021. V. 11. P. 14192. https://doi.org/10.1038/s41598-021-93429-9
- Tamanoi F., Chinnathambi S., Laird M., Komatsu A., Birault A., Takata T., Doan T.L.-H., Mai N.X.D., Raitano A., Morrison K., Suzuki M., Matsumoto K. Construction of boronophenylalanine-loaded biodegradable periodic mesoporous organosilica nanoparticles for BNCT cancer therapy // Int. J. Mol. Sci. 2021. V. 22. № 5. P. 2251. https://doi.org/10.3390/ijms22052251
- Hock N., Racaniello G.F., Aspinall S., Denora N., Khutoryanskiy V.V., Bernkop-Schnürch A. Thiolated nanoparticles for biomedical applications: mimicking the workhorses of our body // Adv. Sci. 2022. V. 9. № 1. P. 2102451. https://doi.org/10.1002/advs.202102451
- Walton N.I., Naha P.C., Cormode D.P., Zharov I. Mesoporous organosilica nanoparticles with internal metal-chelating groups: transition metal uptake and Gd3+ relaxivity // ChemistrySelect. 2023. V. 8. № 24. P. e202301454. https://doi.org/10.1002/slct.202301454
- Huang Y., Zhang C., Zhang L., Chen X., Fan W. Chemical synthesis and multihybridization of small-sized hollow mesoporous organosilica nanoparticles toward advanced theranostics // Acc. Chem. Res. 2024. V. 57. № 24. P. 3465–3477. https://doi.org/10.1021/acs.accounts.4c00502
- Tetour D., Novotná M., Tatýrek J., Máková V., Stuchlík M., Hobbs C., Řezanka M., Müllerová M., Setnička V., Dobšíkovád K., Hodačová J. Preparations of spherical nanoparticles of chiral Cinchona alkaloid-based bridged silsesquioxanes and their use in heterogeneous catalysis of enantioselective reactions // Nanoscale. 2024. V. 16. № 13. P. 6696–6707. https://doi.org/10.1039/D3NR06234A
- Gao M., Zeng J., Liang K., Zhao D., Kong B. Interfacial assembly of mesoporous silica-based optical heterostructures for sensing applications // Adv. Funct. Mater. 2020. V. 30. № 9. P. 1906950. https://doi.org/10.1002/adfm.201906950
- Li H., Chen X., Shen D., Wu F., Pleixats R., Pan J. Functionalized silica nanoparticles: classification, synthetic approaches and recent advances in adsorption applications // Nanoscale. 2021. V. 13. № 38. P. 15998–16016. https://doi.org/10.1039/D1NR04048K
- Zhang X., Zhang H., Liu X., Wang J., Li S., Gao P. Review and future perspectives of stimuli-responsive bridged polysilsesquioxanes in controlled release applications // Polymers. 2024. V. 16. № 22. P. 3163. https://doi.org/10.3390/polym16223163
- Koval’ I.V. Reactions of thiols // Rus. J. Organic Chem. 2007. V. 43. P. 319–346. https://doi.org/10.1134/S1070428007030013
- Ways T.M.M., Ng K.W., Lau W.M., Khutoryanskiy V.V. Silica nanoparticles in transmucosal drug delivery // Pharmaceutics. 2020. V. 12. № 8. P. 751. https://doi.org/10.3390/pharmaceutics12080751
- Rasool N., Negi D., Singh Y. Thiol-functionalized, antioxidant, and osteogenic mesoporous silica nanoparticles for osteoporosis // ACS Biomater. Sci. Eng. 2023. V. 9. № 6. P. 3535–3545. https://doi.org/10.1021/acsbiomaterials.3c00479
- Sierra I., Peґrez-Quintanilla D. Heavy metal complexation on hybrid mesoporous silicas: an approach to analytical applications // Chem. Soc. Rev. 2013. V. 42. № 9. P. 3792–3807. https://doi.org/10.1039/C2CS35221D
- Soldatović T.V. Application of the principle of hard and soft acids and bases to mechanisms of bioinorganic reactions // Natural Science. 2018. P. 134.
- Ni D., Jiang D., Ehlerding E.B., Huang P., Cai W. Radiolabeling silica-based nanoparticles via coordination chemistry: basic principles, strategies, and applications // Acc. Chem. Res. 2018. V. 51. № 3. P. 778–788. https://doi.org/10.1021/acs.accounts.7b00635
- Zhang J., Weng L., Su X., Lu G., Liu W., Tang Y., Zhang Y., Wen J., Teng Z., Wang L. Cisplatin and doxorubicin high-loaded nanodrug based on biocompatible thioether- and ethane-bridged hollow mesoporous organosilica nanoparticles // J. Colloid Interface Sci. 2018. V. 513. P. 214–221. https://doi.org/10.1016/j.jcis.2017.10.116
- Varache M., Bezverkhyy I., Weber G., Saviot L., Chassagnon R., Baras F., Bouyer F. Loading of cisplatin into mesoporous silica nanoparticles: Effect of surface functionalization // Langmuir. 2019. V. 35. № 27. P. 8984–8995. https://doi.org/10.1021/acs.langmuir.9b00954
- Moghaddam S.P.H., Saikia J., Yazdimamaghani M., Ghandehari H. Redox-responsive polysulfide-based biodegradable organosilica nanoparticles for delivery of bioactive agents // ACS Appl. Mater. Interfaces 2017. V. 9. № 25. P. 21133–21146. https://doi.org/10.1021/acsami.7b04351
- Li Y., Lin J., Wang P., Zhu F., Wu M., Luo Q., Zhang Y., Liu X. Tumor microenvironment-responsive yolk–shell NaCl@virus-inspired tetrasulfide-organosilica for ion-interference therapy via osmolarity surge and oxidative stress amplification // ACS Nano. 2022. V. 16. № 5. P. 7380–7397. https://doi.org/10.1021/acsnano.1c09496
- Shao D., Zhang F., Chen F., Zheng X., Hu H., Yang C., Tu Z., Wang Z., Chang Z., Lu J., Li T., Zhang Y., Chen L., Leong K.W., Dong W.-F. Biomimetic diselenide-bridged mesoporous organosilica nanoparticles as an X-ray-responsive biodegradable carrier for chemo-immunotherapy // Adv. Mater. 2020. V. 32. № 50. P. 2004385. https://doi.org/10.1002/adma.202004385
- Hall S.R., Davis S.A., Mann S. Cocondensation of organosilica hybrid shells on nanoparticle templates: A direct synthetic route to functionalized core-shell colloids // Langmuir. 2000. V. 16. № 3. P. 1454–1456. https://doi.org/10.1021/la9909143
- Cui Y., Zheng X.-S., Ren B., Wang R., Zhang J., Xia N.-S., Tian Z.-Q. Au@organosilica multifunctional nanoparticles for the multimodal imaging // Chem. Sci. 2011. V. 2. № 8. P. 1463 –1469. https://doi.org/10.1039/C1SC00242B
- Gao Y., Li Y., Wang Y., Chen Y., Gu J., Zhao W., Ding J., Shi J. Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection // Small. 2015. V. 11. № 1. P. 77–83. https://doi.org/10.1002/smll.201402149
- Gao Y., Li Y., Chen J., Zhu S., Liu X., Zhou L., Shi P., Niu D., Gu J., Shi J. Multifunctional gold nanostar-based nanocomposite: Synthesis and application for noninvasive MR-SERS imaging-guided photothermal ablation // Biomaterials. 2015. V. 60. P. 31–41. https://doi.org/10.1016/j.biomaterials.2015.05.004
- Lai S., Centi S., Borri C., Ratto F., Cavigli L., Micheletti F., Kemper B., Ketelhut S., Kozyreva T., Gonnelli L., Rossi F., Colagrande S., Pini R. A multifunctional organosilica cross-linker for the bio-conjugation of gold nanorods // Colloids Surf. B. 2017. V. 157. P. 174–181. https://doi.org/10.1016/j.colsurfb.2017.05.068
- Simonenko A.V., Burov A.M., Khanadeev V.A. Nanocomposites based on gold nanostars with a hollow silica shell for controlled-release drug delivery // J. Biomed. Photon. Eng. 2024. V. 10. № 4. P. 040314. https://doi.org/10.18287/JBPE24.10.040314
- Салаватов Н.А., Дементьева О.В., Рудой В.М. Золотые наностержни с органокремнеземной оболочкой как платформа для создания многофункциональных наноструктур // Коллоид. журн. 2020. Т. 82. № 6. С. 733–739. https://doi.org/10.31857/S0023291220060129
- Салаватов Н.А., Большакова А.В., Морозов В.Н., Колыванова М.А., Исагулиева А.К., Дементьева О.В. Золотые наностержни с функционализированной органокремнеземной оболочкой: синтез и перспективы применения в тераностике опухолей // Коллоид. журн. 2022. Т. 84. № 1. C. 97–104. https://doi.org/10.31857/S0023291222010104
- Kartseva M.E., Kravchinskiy D.M., Morozov V.N., Staltsov M.S., Kuzmin V.A., Rudoy V.M., Dement’eva O.V. Plasmonic core/shell nanoparticles with grafted fluorophore: Synthesis and emission control // Opt. Mater. 2025. V. 159. P. 116674. https://doi.org/10.1016/j.optmat.2025.116674
- Yi D.K. Nanohybridization of silica-coated Au nanorods and silica nanoballs // J. Nanosci. Nanotechnol. 2011. V. 11. № 6. P. 5264–5269. https://doi.org/10.1166/jnn.2011.4177
- Mallick S., Sun I.-C., Kim K., Yi D.K. Silica coated gold nanorods for imaging and photo-thermal therapy of cancer cells // J. Nanosci. Nanotechnol. 2013. V. 13. № 5. P. 3223–3229. https://doi.org/10.1166/jnn.2013.7149
- Das M., Yi D.K. An S.S.A. Analyses of protein corona on bare and silica-coated gold nanorods against four mammalian cells // Int. J. Nanomed. 2015. V. 10. № 1. P. 1521–1545. https://doi.org/10.2147/IJN.S76187
- Vu D.T., Vu-Le T.T., Nguyen V.N., Le Q.M., Wang C.-R.C., Chau L.-K., Yang T.-S., Chan M.W.Y., Lee C.-I., Ting C.-C., Lin J.-Y., Kan H.-C., Hsu C.C. Gold nanorods conjugated upconversion nanoparticles nanocomposites for simultaneous bioimaging, local temperature sensing and photothermal therapy of OML-1 oral cancer cells // Int. J. Smart Nano Mater. 2021. V. 12. № 1. P. 49–71. https://doi.org/10.1080/19475411.2020.1839595
- Shah K.W., Sreethawong T., Liu S.-H., Zhang S.-Y., Tan L.S., Han M.-Y. Aqueous route to facile, efficient and functional silica coating of metal nanoparticles at room temperature // Nanoscale. 2014. V. 6. № 19. P. 11273–11281. https://doi.org/10.1039/C4NR03306J
- Беллами Л. Инфракрасные спектры сложных молекул. М.: Издательство иностранной литературы, 1963.
- Croissant J., Damien S., Maynadier M., Mongin O., Hugues V., Blanchard-Desce M., Cattoën X., Man M.W.C., Gallud A., Garcia M., Gary-Bobo M., Raehm L., Durand J.-O. Mixed periodic mesoporous organosilica nanoparticles and core–shell systems, application to in vitro two-photon imaging, therapy, and drug delivery // Chem. Mater. 2014. V. 26. № 24. P. 7214–7220. https://doi.org/10.1021/cm5040276
- Croissant J. Maynadier M., Mongin O., Hugues V., Blanchard-Desce M., Chaix A., Cattoën X., Man M.W.C., Gallud A., Gary-Bobo M., Garcia M., Raehm L., Durand J.-O. Enhanced two-photon fluorescence imaging and therapy of cancer cells via gold@bridged silsesquioxane nanoparticles // Small. 2015. V. 11. № 3. P. 295–299. https://doi.org/10.1002/smll.201401759
- Burke B.P., Baghdadi N., Kownacka A.E., Nigam S., Clemente G.S., Al-Yassiry M.M., Domarkas J., Lorch M., Pickles M., Gibbs P., Tripier R., Cawthorne C., Archibald S.J. Chelator free gallium-68 radiolabelling of silica coated iron oxide nanorods via surface interactions // Nanoscale. 2015. V. 7. № 36. P. 14889–14896. https://doi.org/10.1039/C5NR02753E
- Asselin J., Viger M.L., Boudreau D. Metal-enhanced fluorescence and FRET in multilayer core-shell nanoparticles // Adv. Chem. 2014. V. 2014. P. 812313. https://doi.org/10.1155/2014/812313
- Zvyagina A.I., Ezhov A.A., Meshkov I.N., Ivanov V.K., Birin K.P., König B., Gorbunova Y.G., Tsivadze A.Yu., Arslanov V.V., Kalinina M.A. Plasmon-enhanced light absorption at organic-coated interfaces: collectivity matters // J. Mater. Chem. C. 2018. V. 6. № 6. P. 1413–1420. https://doi.org/10.1039/C7TC04905F
- Звягина А.И., Ежов А.А., Кузьмина Н.В., Калинина М.А. “Нерезонансное” усиление оптического поглощения в органических пленках с плазмонными частицами // Коллоид. журн. 2021. Т. 83. № 5. С. 540–547. https://doi.org/10.31857/s0023291221050153
- Croissant J.G., Cattoёn X., Durand J.-O., Man M.W.C., Khashab N.M. Organosilica hybrid nanomaterials with high organic content: syntheses and applications of silsesquioxanes // Nanoscale. 2016. V. 8. № 48. P. 19945–19972. https://doi.org/10.1039/C6NR06862F
- Rahmani S., Chaix A., Aggad D., Hoang P., Moosa B., Garcia M., Gary-Bobo M., Charnay C., AlMalik A., Durand J.-O., Khashab N.M. Degradable gold core–mesoporous organosilica shell nanoparticles for two-photon imaging and gemcitabine monophosphate delivery // Mol. Syst. Des. Eng. 2017. V. 2. № 4. P. 380–383. https://doi.org/10.1039/C7ME00058H
- Li X., Wang X., Qiu H., Li S., Tse L.H.H., Lo W.-S., Lui K.-H., Zhou H., Gu Y., Wong W-T. Engineering optimal gold nanorod-loaded hollow mesoporous organosilica nanotheranostics for NIR-II photoacoustic microscopy imaging and tumor synergistic therapy // Chem. Eng. J. 2024. V. 498. P. 155310. https://doi.org/10.1016/j.cej.2024.155310
- Cheng D., Ji Y., Wang B., Wang Y., Tang Y., Fu Y., Xu Y., Qian X., Zhu W. Dual-responsive nanohybrid based on degradable silica-coated gold nanorods for triple-combination therapy for breast cancer // Acta Biomater. 2021. V. 128. P. 435–446. https://doi.org/10.1016/j.actbio.2021.04.006
- Liu P., Wang Y., Liu Y., Tan F., Li J., Li N. S-nitrosothiols loaded mini-sized Au@silica nanorod elicits collagen depletion and mitochondrial damage in solid tumor treatment // Theranostics. 2020. V. 10. № 15. P. 6774–6789. https://doi.org/10.7150/thno.42661
- Huang H., Xie Z., Li N., Zeng L., Zeng Q., Yang Z., Shen J., Yang H., Liu Y., Wu C. Biomimetic gold nano-modulator for deep-tumor NIR-II photothermal immunotherapy via gaseous microenvironment remodeling strategy // J. Nanobiotechnol. 2025. V. 23. P. 220. https://doi.org/10.1186/s12951-025-03304-2
- Lu Y., Wang Y., Li Y., Li Y., Jiang Y.-W., Li J. Golden tandem of photothermal ablation and simultaneous anti-inflammation in one nanoparticle for activated macrophage-targeted atherosclerosis treatment // Int. J. Nanomed. 2025. V. 20. P. 1731–1746. https://doi.org/10.2147/IJN.S503774
- Roberts J.M., Milo S., Metcalf D.G. Harnessing the power of our immune system: The antimicrobial and antibiofilm properties of nitric oxide // Microorganisms. 2024. V. 12. № 12. P. 2543. https://doi.org/10.3390/microorganisms12122543
- Zhao Z., Shan X., Zhang H., Shi X., Huang P., Sun J., He Z., Luo C., Zhang S. Nitric oxide-driven nanotherapeutics for cancer treatment // J. Control. Release. 2023. V. 362. P. 151–169. https://doi.org/10.1016/j.jconrel.2023.08.038
- Liu M., Chen L., Zhao Z., Liu M., Zhao T., Ma Y., Zhou Q., Ibrahim Y.S., Elzatahry A.A., Li X., Zhao D. Enzyme based mesoporous nanomotors with near-infrared optical brakes // J. Am. Chem. Soc. 2022. V. 144. № 9. P. 3892–3901. https://doi.org/10.1021/jacs.1c11749
- Chen M., Ma E., Xing Y., Xu H., Chen L., Wang Y., Zhang Y., Li J., Wang H., Zheng S. Dual-modal lateral flow test strip assisted by near-infrared-powered nanomotors for direct quantitative detection of circulating microrna biomarkers from serum // ACS Sens. 2023. V. 8. № 2. P. 757–766. https://doi.org/10.1021/acssensors.2c02315
- Zhou H., Liu Q., Chen M., Xie Y., Xu W., Zhang X., Jiang C., Dou P., Fang Z., Wang H., Zheng S. Urease-driven janus nanomotors for dynamic enrichment and multiplexed detection of bladder cancer microRNAs in urine // ACS Sens. 2025. V. 10. № 2. P. 1155–1165. https://doi.org/10.1021/acssensors.4c02996
Supplementary files


