Deposition of submicron aerosols in filters from fibers coated with layers of nanowhiskers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The deposition of submicron aerosol particles in model filters consisting of micron fibers with radial nanowhiskers on the fiber surface is considered. Numerical modeling of a 3D Stokes transverse flow field was performed in a model filter – an isolated row of parallel fibers with whiskers, taking into account a gas slip effect on their surface. The dependencies of the fiber drag force and the fiber collection efficiency on the length and packing density of the whiskers and on the distance between the fibers are calculated. The dependence of the fiber collection efficiency on the particle radius was determined.

Full Text

Restricted Access

About the authors

V. A. Kirsh

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Author for correspondence.
Email: va_kirsch@mail.ru
Russian Federation, Ленинский проспект, 31, корп. 4, Москва, 119071

References

  1. Davies C.N. Air filtration. N.Y.: Academic Press, 1973.
  2. Pfefferkorn, G. Elektronenmikroskopische untersuchungen über den oxydationsvorgang von metallen. Naturwissenschaften. 1953. 40. Bd. 551–552. Electron microscopic observations of aerosols (in German). Proc. Aerosol Technology Workshop, Physical Institute of the University of Mainz, Sept. 29. 1954.pp. 599–603. https://doi.org/10.1007/BF00639678
  3. Brewer J.M., Goren S.L. Evaluation of metal oxide whiskers grown on screens for use as aerosol filtration media // Aerosol Sci. Technol. 1984. V. 3. № 4. P. 411–429. https://doi.org/10.1080/02786828408959029
  4. Li P., Wang C., Zhang Y., Wei F. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes // SMALL. 2014. V. 10. № 22. P. 4543–4561. https://doi.org/10.1002/smll.201401553
  5. Zhang R., Wei F. High-efficiency particulate air filters based on carbon nanotubes // Ch. 26 in Nanotube Superfiber Materials. Science, Manufacturing, Commercialization. Micro and Nano Technologies, 2-nd Ed. 2019. P. 643–666. https://doi.org/10.1016/B978-0-12-812667-7.00026-4
  6. Karwa A.N., Tatarchuk B.J. Aerosol filtration enhancement using carbon nanostructures synthesized within a sintered nickel microfibrous matrix // Sep. Purif. Technol. 2012. V. 87. P. 84–94. https://doi.org/10.1016/j.seppur.2011.11.026
  7. Park S.J., Lee D.G. Performance improvement of micron-sized fibrous metal filters by direct growth of carbon nanotubes // Carbon. 2006. V. 44. P. 1930–1935. https://doi.org/10.1016/j.carbon.2006.02.005
  8. Кирш В.А. Аэрозольные фильтры из пористых волокон // Коллоид. журн. 1996. Т. 58. № 6. С. 786–790.
  9. Кирш А.А., Кирш В.А. Улавливание аэрозольных частиц фильтрами из волокон, покрытых слоями вискеров // Коллоидный журн. 2019. Т. 81. № 6. С. 706–716. https://doi.org/10.1134/S1061933X19060073
  10. Кирш В.А., Кирш А.А. Влияние наноиголочек на волокнах и частицах на эффективность фильтрации аэрозолей // Коллоидный журнал. 2021. Т. 83. № 3. С. 293–301. https://doi.org/10.1134/S1061933X2103008X
  11. Kirsch A.A., Stechkina I.B. The theory of aerosol filtration with fibrous filters // Ch. 4, in Fundamentals of Aerosol Science / Ed. By Shaw D.T. N.Y.: Wiley-Interscience. 1978. P. 165‒256.
  12. Ландау Л.Д., Лифшиц И.М. Теоретическая физика. Т. 6. Гидродинамика. Изд. 4-е, М.: Наука, 1988.
  13. Левич В.Г. Физико-химическая гидродинамика. М.: ГИФМЛ, 1959.
  14. Fuchs N.A. The Mechanics of Aerosols. N.Y.: Dover, 1989.
  15. Luo H., Pozrikidis C. Effect of surface slip on Stokes flow past a spherical particle in infinite fluid and near a plane wall // J. Eng. Math. 2008. V. 62. P. 1–21. https://doi.org/ 10.1007/s10665-007-9170-6
  16. Кирш В.А., Кирш А.А. Осаждение аэрозольных наночастиц в сеточных диффузионных батареях // Коллоид. журн. 2020. Т. 82. № 4. С. 432–439.https://doi.org/10.1134/S1061933X20040055
  17. Miyagi T. Viscous flow at low Reynolds numbers past an infinite row of equal circular cylinders // J. Phys. Soc. Japan. 1958. V. 13. № 5. P. 493–496. https://doi.org/10.1143/JPSJ.13.493
  18. Keller J.B. Viscous flow through a grating or lattice of cylinders // J. Fluid Mech. 1964. V. 18. P. 94–96. https://doi.org/10.1017/S0022112064000064
  19. Kirsch A.A., Stechkina I.B., Fuchs N.A. Effect of gas slip on the pressure drop in a system of parallel cylinders at small Reynolds numbers // J. Colloid Interface Sci. 1971. V. 37. P. 458–461. https://doi.org/10.1016/0021-9797(71)90314-6
  20. Кирш В.А., Кирш А.А. Улавливание субмикронных аэрозольных частиц фильтрами из нановолокон // Коллоид. журн. 2023. Т. 85. № 1. С. 38–46. https://doi.org/10.1134/S1061933X22600476
  21. Кирш В.А. Инерционное осаждение субмикронных аэрозолей в модельных волокнистых фильтрах из ультратонких волокон // Коллоид. журн. 2023. Т. 85. № 3. С. 307–318. https://doi.org/10.1134/S1061933X23600331

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the calculation cell (a): (b) – section transverse to the grain.

Download (120KB)
3. Fig. 2. Dependences of the resistance force of a fiber with needles on the length of the needles hw at different distances between the layers of needles along the fiber axis ξ = 0.2 (1), 0.4 (2), 1 (3); 4 is the resistance force of an impermeable fiber with an equivalent radius of 1 + hw, according to formula (14): the number of needles in the cross section N = 8, the dimensionless radius of the needle aw = 0.025, Kn = 0.

Download (78KB)
4. Fig. 3. Dependences of the resistance forces of a fiber with a “fur coat” of needles (1, 2) and fiber rods shielded by a layer of needles on hw: (1, 1') – N= 8, (2, 2') –N = 4; ξ = 1, b = 0.3.

Download (75KB)
5. Fig. 4. Dependences of the resistance forces of fibers with “coats” of radial needles (1–3) on the length of the needles for different fiber packing densities b = 0.2; 2 – rod fiber shielded by a layer of needles, 3 – equivalent impermeable fiber with a radius of 1 + hw; ξ = 1, aw = 0.025, N = 4.

Download (54KB)
6. Fig. 5. Dependences of the drag force of a fiber with needles on the Knudsen number Kn, obtained by linear extrapolation of the calculated dependences 1/F (flow model with a slip boundary condition, Kn << 1, curves 6) to the region of intermediate Kn numbers: hw = 0.5 (1), 1 (2), 1.5 (3), 2 (4), 0 (5); a0 = 1.5 μm, aw = 0.025, b = 0.2, ξ = 1, N = 8.

Download (84KB)
7. Fig. 6. Dependences of the diffusion coefficient of capture of point particles by a fiber with a “fur coat” of needles taking into account the gas slip effect (solid lines) and without taking it into account (dashed lines) on the Peclet number, where hw = 0 (1), 0.1 (2), 0.5 (3), 1 (4), 2 (5): a0 = 1.5 μm, aw = 0.025, Kn = 0.043 (λ = 0.065 μm), ξ = 0.2, N = 8, b = 0.2, U = 10 cm/s.

Download (118KB)
8. Fig. 7. Quality criterion of the filter γ = γ∗/2a0 made of fibers with needles of length hw = 0.5 depending on the Peclet number: 1 – direct modeling taking into account gas slip at Kn = 0.043, 2 – Kn = 0, 3 – fiber without a “coat” of nanowhiskers. The remaining parameters are the same as in Fig. 6.

Download (67KB)
9. Fig. 8. Dependences of the collection coefficients (a) and quality criteria (b) of model filters made of fibers with needle “coats” on the particle radius: (1–3) – calculation for a composite fiber with hw = 1, (4–6) – for a fiber without needles, solid lines – taking into account the gas slip effect at Kn = 0.043, dashed lines – without taking into account, Kn = 0: b = 0.1 (1), 0.2 (2), 0.3 (3); (c) – the ratio of the quality criteria on rp at b = 0.1 (1), 0.2 (2), 0.3 (3) at Kn = 0.043; aw = 0.025, hw = 1, a0 = 1.5 μm, ξ = 1, N = 4, U = 10 cm/s.

Download (276KB)
10. Fig. 9. Dependences of the capture coefficients on the particle radius at hw = 1 (a), 3 (b), where ξ = 1 (1), 0.4 (2), 0.2 (3); 4 – rod without a layer of needles, 5 – impermeable fiber of equivalent outer radius, Kn = 0, b = 0.2, the parameters are the same as in Fig. 8.

Download (193KB)
11. Fig. 10. Dependences of the capture coefficients of a fiber with a “fur coat” of needles on the particle radius for hw = 1.5 (1, 1'), 1 (2, 2'), 0.5 (3, 3'), 0 (4) without taking into account (1 – 4) and taking into account the gas slip effect at Kn = 0.043 (1'–3') b = 0.2, ξ = 1, a0 = 1.5 μm, aw = 0.025, U = 10 cm/s, N = 8.

Download (119KB)
12. Fig. 11. Dependences of the capture coefficients of a fiber with a “fur coat” of needles on the particle radius for hw = 1 (1, 1'), 0.5 (2,2') taking into account the gas slip effect at N = 8 (1, 2), 4 (1', 2'): b = 0.2, ξ = 1, a0 = 1.5 μm, aw = 0.025, U = 10 cm/s, Kn = 0.043.

Download (91KB)
13. Fig. 12. Dependences of the quality criteria of a filter made of fibers with needles (1 – 6) on the particle radius at hw = 0.2 (2), 0.5 (3), 1 (4), 1.5 (5), 2 (6), 3.5 (7), 1 – hw = 0, Kn = 0.043; 2' – hw = 0.5, Kn = 0. The remaining parameters are the same as in Fig. 11.

Download (127KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».