CHARACTERIZATION OF SUPERHYDROPHOBIC COATINGS BASED ON PDMS AND MQ RESIN ON TEXTURED SURFACES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of studying coatings based on poly(dimethylsiloxane) rubber crosslinked with MQ resin at different contents of the latter. The PDMS :MQ resin ratios have been taken to be 2 : 1, 1 : 1, and 1 : 2. It has been shown that the application of a hydrophobic fluorinated-group-free composite with composition PDMS :MQ = 1 : 1 onto a pre-textured surface by spin-coating or deep-coating results in the formation of superhydrophobic coatings. The coatings are characterized by extremely large contact angles (170°) and rolling angles no larger than 4°. The analysis of variations in the contact angle, surface tension, and contact diameter and volume of a water droplet that has been in contact with a coating for a long time has indicated a high hydrolytic resistance of the obtained coatings.

About the authors

N. DENMAN

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia

Email: o_serenko@ineos.ac.ru
Россия, 119071, Москва, Ленинский просп., 31, корп. 4

A. M. EMEL’YANENKO

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia

Email: o_serenko@ineos.ac.ru
Россия, 119071, Москва, Ленинский просп., 31, корп. 4

O. A. O. A. SERENKO

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia

Email: o_serenko@ineos.ac.ru
Россия, 119991, Москва, ул. Вавилова, 28, стр. 1

L. B. BOINOVICH

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: o_serenko@ineos.ac.ru
Россия, 119071, Москва, Ленинский просп., 31, корп. 4

References

  1. Boinovich L.B., Emelyanenko A.M. Hydrophobic materials and coatings: principles of design, properties and applications // Russ. Chem. Rev. 2008. V. 77. № 7. P. 583–600. https://doi.org/10.1070/RC2008v077n07ABEH003775
  2. Zhang P., Lv F.Y. A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications // Energy. 2015. V. 82. № 15. P. 1068–1087. https://doi.org/10.1016/j.energy.2015.01.061
  3. Emelyanenko A.M. Superhydrophobic materials and coatings. From basic researches to practical applications // Colloid J. 2022. V. 84. № 4. P. 375–379. https://doi.org/10.1134/S1061933X22040032
  4. Sotoudeh F., Mousavi S.M., Karimi N., Lee B.J., Abolfazli-Esfahani J., Manshadi M. K.D. Natural and synthetic superhydrophobic surfaces: A review of the fundamentals, structures, and applications // Alex. Eng. J. 2023. V. 68. № 1. P. 587–609. https://doi.org/10.1016/j.aej.2023.01.058
  5. Khan M.Z., Militky J., Petru M., Tomkova B., Ali A., Toren E., Perveen S. Recent advances in superhydrophobic surfaces for practical applications: A review // Eur. Polym. J. 2022. V. 178. № 5. P. 111481. https://doi.org/10.1016/j.eurpolymj.2022.111481
  6. Liu H., Liu D., Li P., Niu H., Jin H. Effect of superhydrophobic surface on the surface trap distribution of silicone rubber composites // Mater. Lett. 2023. V. 347. № 15. P. 134588. https://doi.org/10.1016/j.matlet.2023.134588
  7. Li A., Wei Z., Zhang F., He Q. A high reliability super hydrophobic silicone rubber // Colloids Surf. A Physicochem. Eng. Asp. 2023. V. 671. № 20. P. 131639. https://doi.org/10.1016/j.colsurfa.2023.131639
  8. Leao A.G., Soares B.G., Silva A.A., Pereira E.C.L., Souto L.F.C., Ribeiro A.C. Transparent and superhydrophobic room temperature vulcanized (RTV) polysiloxane coatings loaded with different hydrophobic silica nanoparticles with self-cleaning characteristics // Surf. Coat. Technol. 2023. V. 462. № 15. P. 129479. https://doi.org/10.1016/j.surfcoat.2023.129479
  9. Eduok U., Faye O., Szpunar J. Recent developments and applications of protective silicone coatings: A review of PDMS functional materials // Prog. Org. Coat. 2017. V. 111. P. 124–163. https://doi.org/10.1016/j.porgcoat.2017.05.012
  10. Cao C., Ge M., Huang J. et al. Robust fluorine-free superhydrophobic PDMS-ormosil@fabrics for highly effective self-cleaning and efficient oil-water separation // J. Mater. Chem. A. 2016. V.4. № 31. P. 12179–12187. https://doi.org/10.1039/C6TA04420D
  11. Chen D., Chen F., Hu X., Zhang H., Yin X., Zhou Y. Thermal stability, mechanical and optical properties of novel addition cured PDMS composites with nano-silica sol and MQ silicone resin // Compos. Sci. Technol. 2015. V. 117. P. 307–314. https://doi.org/10.1016/j.compscitech.2015.07.003
  12. Kishi H., Nakamura T., Hagiwara S., Urahama Y. Thermo-reversible phase structures of lightly cross-linked PDMS/MQ silicone polymer blends // Polymer. 2020. V. 200. P. 122574. https://doi.org/10.1016/j.polymer.2020.122574
  13. Ji J., Ge X., Pang X., Liu R., Wen S., Sun J., Liang W., Ge J., Chen X. Synthesis and characterization of room temperature vulcanized silicone rubber using methoxyl-capped MQ silicone resin as self-reinforced cross-linker // Polymers. 2019. V. 11. № 7. P. 1142. https://doi.org/10.3390/polym11071142
  14. Robeyns C., Picard L., Ganachaud F. Synthesis, characterization and modification of silicone resins: An “augmented review” // Prog. Org. Coat. 2018. V. 125. P. 287–315. https://doi.org/10.1016/j.porgcoat.2018.03.025
  15. Meshkov I.B., Kalinina A.A., Gorodov V.V., Bakirov A.V., Krasheninnikov S.V., Chvalun S.N., Muzafarov A.M. New principles of polymer composite preparation. MQ copolymers as an active molecular filler for polydimethylsiloxane rubbers // Polymers. 2021. V. 13. № 17. P. 2848. https://doi.org/10.3390/polym13172848
  16. Bakirov A.V., Krasheninnikov S.V., Shcherbina M.A., Meshkov I.B., Kalinina A.A., Gorodov V.V., Tatarinova E.A., Muzafarov A.M., Chvalun S.N. True molecular composites: Unusual structure and properties of PDMS-MQ resin blends // Polymers. 2023. V.15. № 1. P. 48. https://doi.org/10.3390/polym15010048
  17. Tatarinova E., Vasilenko N., Muzafarov A. Synthesis and properties of MQ copolymers: Current state of knowledge // Molecules. 2017. V. 22. № 10. P. 1768. https://doi.org/10.3390/molecules22101768
  18. Meshkov I.B., Kalinina A.A., Kazakova V.V., Demchenko A.I. Densely cross-linked polysiloxane nanogels // INEOS Open. 2020. V. 3. № 4. P. 118–132. https://doi.org/10.32931/io2022r
  19. Flagg D.H., McCarthy T.J. Rediscovering silicones: MQ copolymers // Macromolecules. 2016. V. 49. № 22. P. 8581–8592. https://doi.org/10.1021/acs.macromol.6b01852
  20. Sataeva N.E., Boinovich L.B., Emelyanenko K.A., Domantovsky A.G., Emelyanenko A.M. Laser-assisted processing of aluminum alloy for the fabrication of superhydrophobic coatings withstanding multiple degradation factors // Surf. Coat. Technol. 2020. Vol. 397. P. 125993. https://doi.org/10.1016/j.surfcoat.2020.125993
  21. Boinovich L.B., Emelyanenko A.M., Emelyanenko K.A., Modin E.B. Modus operandi of protective and anti-icing mechanisms underlying the design of longstanding outdoor icephobic coatings // ACS Nano. 2019. V. 13. № 4. P. 4335–4346. https://doi.org/10.1021/acsnano.8b09549
  22. Emelyanenko A.M., Boinovich L.B. The use of digital processing of video images for determining parameters of sessile and pendant droplets // Colloid J. 2001. V. 63. № 2. P. 159–172. https://doi.org/10.1023/A:1016621621673

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (656KB)
3.

Download (206KB)
4.

Download (76KB)
5.

Download (120KB)
6.

Download (120KB)
7.

Download (1MB)

Copyright (c) 2023 Н. Денман, А.М. Емельяненко, О.А. Серенко, Л.Б. Бойнович

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».