STABILIZATION OF PICKERING EMULSIONS WITH HETEROAGGREGATES OF DETONATION NANODIAMONDS AND SIO2 NANOPARTICLES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The stabilization of Pickering emulsions with mixtures of similarly and oppositely charged detonation nanodiamonds and silica nanoparticles has been studied. Dynamic light scattering has been employed to study the influence of pH and the mass ratio of the particles on the sizes and ζ-potentials of aggregates. The formation of heteroaggregates from mixtures of similarly charged nanoparticles and the efficient stabilization of dodecane droplets have been shown and theoretically substantiated. Submicron droplets of Pickering emulsion stabilized with the mixtures of oppositely charged silica nanoparticles and detonation nanodiamonds
have been obtained.

About the authors

K. V. PALAMARCHUK

National Research Centre “Kurchatov Institute”, Moscow, Russia

Email: kvp1239@mail.ru
Россия, 123182, Москва, пл. Академика Курчатова, 1

N. P. PALAMARCHUK

National Research Centre “Kurchatov Institute”, Moscow, Russia; Federal State Autonomous Educational Institution of Higher Education “Moscow Institute
of Physics and Technology (National Research University),” Dolgoprudnyi, Moscow oblast, Russia

Email: kvp1239@mail.ru
Россия, 123182, Москва, пл. Академика Курчатова, 1; Россия, 141701, Долгопрудный, Институтский переулок, 9

T. V. BUKREEVA

Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics,”
Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: kvp1239@mail.ru
Россия, 123182, Москва, пл. Академика Курчатова, 1; Россия, 119333, Москва, Ленинский пр., 59

References

  1. Ramsden W. Separation of solids in the surface-layers of solutions and “suspensions” // Proc. R. Soc. London. 1903. V. 72. P. 156–164. https://doi.org/10.1098/rspl.1903.0034
  2. Pickering S.U. CXCVI.—Emulsions // J. Chem. Soc. Trans. 1907. V. 91. P. 2001–2021. https://doi.org/10.1039/CT9079102001
  3. Berton-Carabin C.C., Schroen K. Pickering emulsions for food applications: Background, trends, and challenges // Annu. Rev. Food Sci. Technol. 2015. V. 6. P. 263–297. https://doi.org/10.1146/annurev-food-081114-110822
  4. Guzman E., Ortega F., Rubio R.G. Pickering emulsions: A novel tool for cosmetic formu-lators // Cosmetics. 2022. V. 9. № 4. P. 68. https://doi.org/10.3390/cosmetics9040068
  5. Marto J., Ascenso A., Simoes S., Almeida A.J., Ribeiro H.M. Pickering emulsions: Challenges and opportunities in topical delivery // Expert Opin. Drug Deliv. 2016. V. 13. № 8. P. 1093-1107. https://doi.org/10.1080/17425247.2016.1182489
  6. Albert C., Beladjine M., Tsapis N., Fattal E., Agnely F., Huang N. Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications // J. Control. Release 2019. V. 309. P. 302–332. https://doi.org/10.1016/j.jconrel.2019.07.003
  7. Rodriguez A.M.B., Binks B.P. Capsules from Pickering emulsion templates // Curr. Opin. Colloid Interface Sci. 2019. V. 44. P. 107–129. https://doi.org/10.1016/j.cocis.2019.09.006
  8. Вуль А.Я., Шендерова О.А. Детонационные наноалмазы. Технология, структура, свойства и применения. СПб: ФТИ им. А.Ф. Иоффе, 2016.
  9. Turcheniuk K., Mochalin V.N. Biomedical applications of nanodiamond (Review) // Nanotechnology. 2017. V. 28. № 25. P. 252001. https://doi.org/10.1088/1361-6528/aa6ae4
  10. Maas M., Bollhorst T., Zare R.N., Rezwan K. Diamondosomes: Submicron colloidosomes with nanodiamond shells // Part. Syst. Charact. 2014. V. 31. № 10. P. 1067–1071. https://doi.org/10.1002/ppsc.201400022
  11. Farias B.V., Brown D., Hearn A., Nunn N., Shenderova O., Khan S.A. Nanodiamond-stabilized Pickering emulsions: Microstructure and rheology // J. Colloid Interface Sci. 2020. V. 580. № 15. P. 180–191. https://doi.org/10.1016/j.jcis.2020.07.030
  12. Huang Z., Jurewicz I., Munoz E., Garriga R., Keddie J.L. Pickering emulsions stabilized by carboxylated nanodiamonds over a broad pH range // J. Colloid Interface Sci. 2022. V. 608. P. 2025–2038. https://doi.org/10.1016/j.jcis.2021.10.130
  13. Palamarchuk K.V., Borodina T.N., Kostenko A.V., Chesnokov Y.M., Kamyshinsky R.A., Palamarchuk N.P., Yudina E.B., Nikolskaya E.D., Yabbarov N.G., Mollaeva M.R., Bukreeva T.V. Development of submicrocapsules based on co-assembled like-charged silica nanoparticles and detonation nanodiamonds and polyelectrolyte layers // Pharmaceutics. 2022. V. 14. № 3. P. 575. https://doi.org/10.3390/pharmaceutics14030575
  14. Binks B.P., Liu W., Rodrigues J.A. Novel stabilization of emulsions via the heteroaggregation of nanoparticles // Langmuir. 2008. V. 24. № 9. P. 4443–4446. https://doi.org/10.1021/la800084d
  15. Королева М.Ю., Быданов Д.А., Паламарчук К.В., Юртов Е.В. Стабилизация прямых эмульсий наночастицами SiO2 и Fe3O4 // Коллоидн. журн. 2018. Т. 80. № 3. С. 300–307. https://doi.org/10.7868/S0023291218030060
  16. Palamarchuk K.V., Vantsyan M.A., Kamyshinsky R.A., González-Alfaro Y., Bukreeva T.V. Multifunctional capsules with oil core and shells of SiO2 nanoparticles, nanodiamonds and polyelectrolyte layers with Fe3O4 nanoparticles // Int. J. Nanotechnol. 2019. V.16. № 6–10. P. 510–521. https://doi.org/10.1504/IJNT.2019.106622
  17. Derjaguin B.V., Landau L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes // Acta Physicochim. URSS. 1941. V. 14. P. 633–662.
  18. Verwey E.J.W., Overbeek J.T.G. Theory of the Stability of Lyophobic Colloids. Amsterdam: Elsevier, 1948.
  19. Petosa A.R., Jaisi D.P., Quevedo I.R., Elimelech M., Tufenkji N. Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions environ // Sci. Technol. 2010. V. 44. № 17. P. 6532–6549. https://doi.org/10.1021/es100598h
  20. Зонтаг Г., Штренге К. Коагуляция и устойчивость дисперсных систем. Ленинград: Химия, 1973.
  21. Israelachvili J.N. Intermolecular and Surface Forces. California: Academic Press, 2011.
  22. Visser J. On Hamaker constants: A comparison between Hamaker constants and Lifshitz-van der Waals constants // Advan. Colloid Interface Sci. 1972. V. 3. № 4. P. 331–363. https://doi.org/10.1016/0001-8686(72)85001-2
  23. Костин А.С., Кольцова Э.М. К вопросу о механизме агрегации наночастиц диоксида титана // Фундаментальные исследования. 2012. № 6. С. 647–651.
  24. Facal P.M., Cheng C., Sedev R., Stocco A., Binks B.P., Wang D. Van der Waals Emulsions: Emulsions stabilized by surface-inactive, hydrophilic particles via van der Waals attraction // Angew. Chem. Int. Ed. 2018. V. 57. № 30. P. 9510–9514. https://doi.org/10.1002/anie.201805410
  25. Binks B.P. Particles as surfactants — Similarities and differences // Current Opinion in Colloid & Interface Science. 2002. V. 7. № 1−2. P. 21–41. https://doi.org/10.1016/S1359-0294(02)00008-0
  26. Pawar A.B., Caggioni M., Ergun R., Hartel R.W., Spicer P.T. Arrested coalescence in Pickering emulsions // Soft Matter. 2011. V. 7. P. 7710–7716. https://doi.org/10.1039/c1sm05457k

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (472KB)
3.

Download (80KB)
4.

Download (64KB)
5.

Download (127KB)
6.

Download (65KB)
7.

Download (2MB)
8.

Download (190KB)
9.

Download (42KB)
10.

Download (62KB)
11.

Download (840KB)

Copyright (c) 2023 К.В. Паламарчук, Н.П. Паламарчук, Т.В. Букреева

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».