Application of the parameter concentration method to modeling non-stationary processes in low-temperature heat exchangers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Currently, programmed controllers are used as means of regulating low-temperature installations. Controllers have limited operational memory and require simple mathematical models for their application. The use of an approximate solution to complex systems of equations describing non-stationary operating modes of heat exchangers allows for a significant reduction in the requirements for the operational memory of controllers.

AIMS: Obtaining an approximate solution to systems of equations describing non-stationary operating modes of heat exchangers.

METHODS: Using the coordinate-based parameter concentration method, a system of partial differential equations with respect to coordinate and time is reduced to a system of total differential equations with respect to time. This system of equations has an analytical solution by averaging the thermophysical properties of the flows and the heat-transfer wall over the temperature range under consideration, or a solution using the Runge-Kutta method by taking into account the dependence of changes in thermophysical properties on temperature.

RESULTS: Systems of equations have been obtained that describe non-stationary operating modes of heat exchangers, making it possible to simulate the operation of a low-temperature installation and program the controllers used in this installation.

CONCLUSIONS: A new method for obtaining approximate solutions to equations systems describing the transient operating conditions of heat exchangers is proposed. Using these solutions, one can easily obtain an analytical or simple numerical solution for describing the transient operating conditions for a low-temperature system comprising several heat exchangers. The resulting time-dependent temperature dependences for heat exchanger flows can be used in programming controllers used for the safe and efficient operation of processes in low-temperature systems.

About the authors

Nikolai A. Lavrov

Bauman Moscow State Technical University

Author for correspondence.
Email: 79035596471@yandex.ru
ORCID iD: 0000-0003-2324-8247
SPIN-code: 9187-7444

Dr. Sci. (Engineer), Professor

Russian Federation, Moscow

Anastasia A. Kazakova

Bauman Moscow State Technical University

Email: kazakova@bmsty.ru
ORCID iD: 0000-0001-5994-4186
SPIN-code: 9334-8822

Cand. Sci. (Engineer), Assistant Professor

Russian Federation, Moscow

References

  1. Arkharov AM, Arkharov IA, Belyakov VP, et al. Cryogenic Systems: A Textbook for University Students. In 2 vols. Vol. 2. Fundamentals of Apparatus, Plant and System Design. Arkharov AM, Smorodin AI, eds. Moscow: Mashinostroenie; 1999. (In Russ.)
  2. Kuznetsov AG, Kharitonov SV. Automatic Control of Thermal Power Plants. Moscow: Izd-vo MGTU im. N.E. Baumana; 2024. (In Russ.) EDN: EVABUH
  3. Aleksandrov AA, Arkharov AM, Arkharov IA, et al. Heat Engineering. Moscow: Izd-vo MGTU im. N.E. Baumana; 2020. (In Russ.)
  4. Shishov OV. Programmable Controllers in Industrial Automation Systems. Moscow: INFRA-M; 2021. (In Russ.)
  5. Boxall J. Learning Arduino: 65 DIY Projects. St. Petersburg: Piter; 2022. (In Russ.)
  6. Lavrov NA, Khutsieva SI, Shananin VA. Use of neural networks for dynamic heat exchanger modeling. Chem Petrol Eng. 2023;58(3–4):917–924. doi: 10.1007/s10556-023-01183-8 EDN: IZEMEF
  7. Lavrov NA, Khutsieva SI, Butkevich IK. Mathematical modeling of non-stationary modes of a helium liquefier. Chem Petrol Eng. 2020;56(3–4):302–309. doi: 10.1007/s10556-020-00773-0 EDN: SDMBYJ
  8. Kozlov VN, Lavrov NA. Modeling of the Dynamic Operating Mode of a Heat Exchange Apparatus. Izv Vyss Uchebn Zaved Mashinostr. 1988;(8):56–60. (In Russ.) EDN: VRJNDB
  9. Kozlov VN, Lavrov NA. A Lumped-Parameter Optimization System for Studying the Operation of a Cryogenic Liquefier. Izv Vyss Uchebn Zaved Mashinostr. 1992;(10–12):71–75. (In Russ.)
  10. Lavrov NA. A Method for Numerical Solution of Systems of Equations Describing Steady-State Operation of a Two-Flow Heat Exchanger. Vestn Mosk Gos Tekh Univ im N E Baumana Ser Mashinostr. 1996;(S1):13-18. (In Russ.) EDN: VSMTGD

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).