Optimising energy use in refrigeration systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The energy used to operate a refrigeration system accounts for a significant proportion of the total lifetime cost of ownership of the system and yet surveys show huge variation in the amount of energy required from one system to another. This paper considers ways in which energy is used and reasons why there is such a large discrepancy in usage between systems. It describes recent work to assess and benchmark the performance of cold storage facilities and explains a methodology for ensuring that cold and chill stores operate as efficiently as possible.

About the authors

Andy Pearson

Star Refrigeration Ltd.

Author for correspondence.
Email: apearson@star-ref.co.uk
United Kingdom, Thornliebank, Glasgow

References

  1. Evans JA, Huet J-M, Reinholdt L, et al. Cold Store Energy Performance. In: Proceedings of the 2nd IIR Conference on the Cold Chain and Sustainability. Paris: IIF/IIR, 2013.
  2. Pearson A. Energy Performance of Industrial Cold Storage Facilities. In: Proceedings of the 25th IIR Congress, Montreal, Canada. Montreal: IIF/IIR, 2019.
  3. World Guide to Low-Charge Ammonia Part 1, Shecco. Brussels: Shecco, 2019.
  4. Pearson A. Improvements in the Prediction of Energy Performance of Refrigeration Systems. In: Proceedings of the 14th IIR Gustav Lorentzen Conference. Paris: IIF/IIR, 2020.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Daily predictions of SEC over a 30 day period.

Download (75KB)
3. Fig. 2. Daily SEC Prediction over a wider timespan.

Download (138KB)
4. Fig. 3. Digital display of daily prediction figures.

Download (122KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).