Stirling refrigeration machine design method

Cover Page

Cite item

Full Text

Abstract

А universal design procedure of reverse cycle Stirling machines (cryogenic, refrigerating machines of moderate refrigeration and heat pumps) has been proposed. The design is based on a two-level multiple parameters optimization. On the first level, using an adiabatic mathematical model the parameters of the exergetic efficiency of the ideal Stirling machine. On the second level, using a hydrodynamic model, the optimization is carried out for obtaining the maximum exergetic efficiency of a real machine. In so doing the results of the first level of optimization are used as external factors. According to the proposed procedure characteristics of a Stirling refrigerating machine with the capacity 50 kW are calculated.

About the authors

N. G. Kirillov

A.F. Mozhaisky Military Academy; Stirling Technologies Research Center

Author for correspondence.
Email: info@eco-vector.com

Candidate of Technical Sciences, Federal Expert in Science and Technology

Russian Federation

References

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Main stages of development of Stirling machine calculation method

Download (2MB)
3. Fig. 2. Information methodological array for the development of a universal method of calculation of reverse cycle Stirling machines

Download (3MB)
4. Fig. 3. Structure of the universal method for calculating the reverse cycle Stirling machine

Download (3MB)
5. Fig. 4. Algorithm of solving the system of equations to calculate the characteristics of the reverse cycle Stirling machine

Download (4MB)
6. Fig. 5. Structure of the two-level multiparameter reverse cycle Stirling machine optimization technique

Download (1MB)

Copyright (c) 2003 Kirillov N.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).