TRANSSONIC PLASMA SYSTEM FOR WATER DISINFECTION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The efficiency of transonic plasma system application for water purification to biologically clean water is experimentally demonstrated. The method is based on the formation of a high-speed two-phase flow with a double transition through the sound barrier with plasma generation in the supersonic flow zone. The first transition is caused by the formation of supersonic flow due to the formation of a two-phase gas-liquid mixture. The second transition is caused by a sharp deceleration of the two-phase flow and formation of subsonic single-phase flow regime, which is accompanied by a jump-like increase in static pressure and local generation of ultrasonic field; electromagnetic field; electrostatic field, etc. The experiments were conducted immediately after water intake from the Moskva River and with a week's cultivation of microorganisms in a cube tank at a temperature of 15-22°. After treatment, all tested samples met the quality indicators "drinking water" according to SanPiN 2.1.4.1074-01.

About the authors

M. B Shavelkina

Joint Institute of High Temperatures, Russian Academy of Sciences

Email: mshavelkina@gmail.com
Moscow, Russia

Yu. P Skakunov

OOO Transonic Plasma Systems

Moscow, Russia

A. Yu Skakunov

CTC-Euro JSC

Moscow, Russia

M. A Shavelkin

Joint Institute of High Temperatures, Russian Academy of Sciences

Moscow, Russia

K. D Efimov

OOO INPK Russian Energy Technologies

Moscow, Russia

References

  1. Sahni M., Finney W.C., Locke B.R. // J. Adv. Oxid. Technol. 2005. V. 8. P. 105.
  2. Mededovic S., Locke B.R. // Ind. Eng. Chem. Res. 2007. V. 46. P. 2702.
  3. Sato M., Ohgiyama T., Clements J.S. // IEEE Trans. Ind. Appl. 1996. V. 32. Р. 106.
  4. Sunka P. // Phys. Plasmas. 2001. V. 8. P. 2587.
  5. Locke B.R., Sato, M., Sunka, P., Hoffmann, M., Chang, J.-S. // Ind. Eng. Chem. Res. 2006. V. 45. P. 882.
  6. Joshi A.A., Locke B.R., Arce P., Finney W.C.J. // Hazard. Mater. 1995. V. 41. P. 3.
  7. Grymonpre D., Finney W. C., Locke B.R. // Chem. Eng. Sci. 1999. V. 54. P. 3095.
  8. Lukes P. PhD thesis. Prague, Czech Republic: Institute of Plasma Physics, AS CR, 2001.
  9. Kirkpatrick M.J., Locke B.R. Ind. Eng. Chem. Res. 2005. V. 44. P. 4243.
  10. Thagard S.M., Locke B.R. // J. Phys. D: Appl. Phys. 2007. V. 40. № 24. P. 7734. https://doi.org/10.1088/0022-3727/40/24/021
  11. Sato M., Tokita K., Sadakata M., Sakai T., Nakanishi K. // KAGAKU KOGAKU RONBUNSHU. 1988. V. 14. № 4. P. 556. https://doi.org/10.1252/kakoronbunshu.14.556
  12. Sakurauchi Y., Kondo E. // Nippon Nogeikagaku Kaishi.1980. V. 54. P. 837.
  13. Sale A.J.H., Hamilton W.A. // Biochim. Biophys. Acta. 1967. V.148. P.781.
  14. Gilliland S.E., Speck M.L. // Appl. Microbiol. 1967. V. 15. № 5. P. 1031. https://doi.org/10.1128/am.15.5.1031-1037
  15. Mason T.J., Lorimer J.P., Bates D.M., Zhao Y. // Ultrason. Sonochem. 1994. V. 1. № 2. S. 91–S95. https://doi.org/10.1016/1350-4177(94)90004-3
  16. Soyama H., Muraoka T. Proc. of 18th International Conference on Water jetting. 2010. P. 259.
  17. Ihara S., Hirohata T., Kominato Y., Yamabe C., Ike H., Hakiai K., Hirabayashi K., Tamagawa M. // Electrical Engineering in Japan. 2014. V. 186. №. 4. P. 1. https://doi.org/10.1002/eej.22317
  18. Kudo K., Ito H., Ihara S., Terato H. // J. Electrost. 2015. V. 73. P. 131. https://doi.org/10.1016/j.elstat.2014.10.010
  19. Kudo K., Ito H., Ihara S., Terato H. // J. Phys. D: Appl. Phys. 2015. V. 48. P. 365401. https://doi.org/10.1088/0022-3727/48/36/365401
  20. Kogelschatz U. // Plasma Chem. Plasma Process. 2003. V. 23. P.1. https://doi.org/10.1023/A:1022470901385
  21. Watson P.K. // IEEE Trans. Ind. Appl. 1985. El20. P. 396.
  22. Скакунов Ю.П., Скакунов А.Ю., Кошманов Д.Е., Антохин В.А. Способ и устройство для обработки водной среды в потоке. RU 2637026 C1 // Б. И. 2017. № 34.
  23. Bugaenko V.L., Byakov V.M. // High Energ. Chem. 1998. V. 33. P. 407.
  24. Bader H., Hoigne J. // Water Res. 1981. V.15. P. 449.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).