Influence of diluent on alkylmalonamide radiolysis

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The radiolysis of the extractant N1,N3-dimethyl-N1,N3-dibutyltetradecylmalonamide and its 30% solution in n-tridecane under the action of 3 MeV electrons was studied. The key radiolytic processes are fragmentation of the extractant molecules. The decomposition is predominant along the bonds located in the β-position relative to the carbonyl group: N-Me, N-Bu, C-C14H29 and C-C(O). The C-C(O) bond is the weakest – its cleavage gives more than half of all the extractant degradation products. The observed yield of extractant degradation in solution is almost one and a half times higher than in the undiluted state. At the same time, a decrease in the yield of diluent degradation is observed in the solution. The observed effects indicate partial physical and chemical protection of the diluent by the dissolved extractant.

Sobre autores

T. Khalikov

Frumkin Institute of Physical Chemistry and Electrochemistry RAS

Email: ponomarev@ipc.rssi.ru
Moscow, Russia

E. Kholodkova

Frumkin Institute of Physical Chemistry and Electrochemistry RAS

Autor responsável pela correspondência
Email: ponomarev@ipc.rssi.ru
Moscow, Russia

A. Ponomarev

Frumkin Institute of Physical Chemistry and Electrochemistry RAS

Email: ponomarev@ipc.rssi.ru
Moscow, Russia

Bibliografia

  1. Evsiunina M.V., Matveev P.I., Kalmykov S.N., Petrov V.G. // Moscow Univ. Chem. Bull. 2021. V. 76. P. 287
  2. Matveev P.I., Mohapatra P.K., Kalmykov S.N., Pet­rov V.G. // Solvent Extr. Ion Exch. 2021. V. 39. P. 679.
  3. Yang Y., Walton A., Sheridan R., Güth K., Gauß R., Gutfleisch O., Buchert M., Steenari B.-M., Van Gerven T., Jones P.T., Binnemans K. // J. Sustain. Metall. 2017. V 3. P. 122.
  4. Modolo G., Vijgen H., Serrano‐Purroy D., Christiansen B., Malmbeck R., Sorel C., Baron P. // Sep. Sci. Technol. 2007. V. 42. P. 439.
  5. Poinssot C., Rostaing C., Baron P., Warin D., Boullis B. // Procedia Chem. 2012. V. 7. P. 358.
  6. Aderibigbe A.D., Day D.P. // ChemistrySelect. 2020. V. 5. P. 15222.
  7. Delavente F., Guillot J.-M., Thomas O., Berthon L., Nicol C. // J. Photochem. Photobiol. A Chem. 2003. V. 158. P. 55.
  8. Delavente F., Guillot J.-M., Thomas O., Berthon L., Nicol C. // J. Photochem. Photobiol. A Chem. 2004. V. 162. P. 81.
  9. Ponomarev A.V. // Chem. Eng. J. Adv. 2023. V. 15. P. 100513.
  10. Metreveli A.K., Ponomarev A.V. // High Energy Chem. 2016. V. 50. P. 254.
  11. Traven V.F., Organic chemistry [Electronic resource]: textbook for universities: in 3 volumes. BINOM. M.: Knowledge Laboratory, 2015.
  12. Woods R., Pikaev A. Applied radiation chemistry. Radiation processing. NY: Wiley, 1994.
  13. Vlasov S.I., Kholodkova E.M., Ponomarev A.V. // High Energy Chem. 2021. V. 55. P. 393.
  14. Serenko Y.V., Ponomarev A.V., Belova E.V. // High Energy Chem. 2021. vol. 55. p. 482.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).