Implication of nucleinic acids on spectral properties of solves of complexes of Pd(II) and Pt(II) with aromatic ligands

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The interaction between nucleic acids (calf thymus DNA and plasmid pCY B3, yeast RNA) and ethylenediamine complexes of Pd(II) and Pt(II) containing aromatic heterocyclic ligands (2,2`-bipyridyl, 1,10-phenanthroline, 2-phenylpyridine, 2-(2`-ethyl)pyridine, 2-phenylpyridine, 2-(2`-ethyl)pyridine) was studied by electron absorption spectroscopy and gel electrophoresis, containing aromatic heterocyclic ligands (2,2`-bipyridyl, 1,10-phenanthroline, 2-phenylpyridine, 2-(2`-thienyl)pyridine, 7,8-benzoquinoline, methyl-2-phenyl-4-quinoline carboxylate, coumarin-6 and Nile red. The applicability of electron absorption spectroscopy to establish the intercalation of organometallic complexes in DNA was demonstrated. Of the investigated complexes, only complexes of Pd(II) with Nile red and coumarin-6 were found to be capable of intensive interaction with RNA. The effective unraveling of the secondary stranding of plasmid DNA detected by gel electrophoresis suggests that these same complexes intercalate into DNA more actively than others.

Sobre autores

E. Demidov

The Herzen State Pedagogical University of Russia

Email: puzyk@mail.ru
St. Petersburg, Russia

M. Abramova-Nemesh

The Herzen State Pedagogical University of Russia

St. Petersburg, Russia

T. Novikova

The Herzen State Pedagogical University of Russia

St. Petersburg, Russia

A. Plekhanov

Smorodintsev Research Institute of Influenza

St. Petersburg, Russia

V. Feoktistova

Information Technologies, Mechanics and Optics University

St. Petersburg, Russia

M. Puzyk

The Herzen State Pedagogical University of Russia

Email: puzyk@mail.ru
St. Petersburg, Russia

Bibliografia

  1. Rosenberg B., van Camp L., Krigas T. // Nature. 1965. V. 205. P. 698; https://doi.org/10.1038/205698a0
  2. Cohen S.M., Lippard S.J. // Prog. Nucleic Acid Res. Mol. Biol. 2001. V. 67. P. 93; https://doi.org/10.1016/s0079-6603(01)67026-0
  3. Hucke A., Park G.Y., Bauer O.B., Beyer G., Köppen C., Zeeh D. et al. // Front. Chem., Sec. Chem. Biol. 2018. V. 6. P. 1. Article 180; https://doi.org/10.3389/fchem.2018.00180
  4. Din M.I., Ali F., Intisar A. // Revue Roumaine de Chimie. 2019. V. 64. № 1. P. 5; https://doi.org/10.33224/rrch.2019.64.1.01
  5. Howe-Grant M., Lippard S.J. // Biochemistry. 1979. V. 18. P. 5762; https://doi.org/10.1021/bi00593a003
  6. Lee S.A., Grimm H., Pohle W., Scheiding W., van Dam L., Song Z. et al. // Phys. Rev. E. 2000. V. 62. № 5. P. 7044; https://doi.org/10.1103/physreve.62.7044
  7. Szabo A., Lee S.A. // J. Biomolec. Struct. Dynamics. 2008. V. 26. № 1. P. 93; https://doi.org/10.1080/07391102.2008.10507227
  8. Brodie C.R., Collins J.G., Aldrich-Wright J.R. // Dalton Trans. 2004. P. 1145; https://doi.org/10.1039/B316511F
  9. Kvam P.-I., Songstad J. // Acta Chem. Scand. 1995. V. 49. P. 313; https://doi.org/10.3891/acta.chem.scand.49-0313
  10. Puzyk M.V., Kotlyar V.S., Antonov N.V., Ivanov Yu.A., Ivanov M.A., Balashev K.P. // Optics Spectroscopy. 2000. V. 89. № 5. P. 721; https://doi.org/10.1134/1.1328126
  11. Rodionova O.A., Puzyk M.V., Balashev K.P. // Optics Spectroscopy. 2008. V. 105. № 1. P. 62; https://doi.org/10.1134/S0030400X08070102
  12. Baichurin R.I., Dulanova I.T., Puzyk Al.M., Pu­zyk M.V. // Optics Spectroscopy. 2022. V. 130. № 14. P. 2108; https://doi.org/10.21883/EOS.2022.14.53995.2253-21
  13. Feoktistova V.A., Baichurin R.I., Novikova T.A., Plekhanov A.Yu., Puzyk, M.V. // Optics Spectroscopy. 2023. № 2. P. 247; https://doi.org/10.21883/OS.2023.02.55018.4480-22
  14. Freifelder D. // Physical biochemistry: applications to biochemistry and molecular biology. San Francisco: W.H. Freeman, 1982.
  15. Watson J.D., Baker T.A., Bell S.P., Gann A., Levine M., Losick R. Molecular Biology of the Gene (5th ed.). New York: Benjamin Cummings. 2003. ISBN 0-8053-4635-X.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).