Rules of correspondence in atomic physics


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The Smirnov method of analytic continuation (B.M. Smirnov, Sov. Phys. JETP 20, 345 (1964)) has been justified and developed for atomic physics. It has been shown that the polarizability of alkali atoms α, their van der Waals interaction constant C6, and the oscillator strength of the transition to the first P state f01 are related to the parameter 〈r2〉 and gap in the spectrum \(
\frac{3}{2}\frac{f}{\Delta } \approx \frac{3}{2}\alpha \Delta \approx {\left( {3{C_6}\Delta } \right)^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}}}} \approx \left\langle {{r^2}} \right\rangle \)
. The average square of the coordinate of the valence electron 〈r2〉 in the first approximation has a hydrogen dependence \(
{J_1} = \frac{1}{{2{v^2}}}.\)
on the filling factor ν, which is defined in terms of the first ionization potential: xxxxxxxxx

Sobre autores

A. Dyugaev

Landau Institute for Theoretical Physics; Max-Planck-Institut für Physik Komplexer Systeme

Email: lebedeva@issp.ac.ru
Rússia, Chernogolovka, Moscow region, 142432; Dresden, D-01187

E. Lebedeva

Institute of Solid State Physics

Autor responsável pela correspondência
Email: lebedeva@issp.ac.ru
Rússia, Chernogolovka, Moscow region, 142432

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2016