Plasma Mechanism of Radio Emission Generation on a Shock Wave in the Vicinity of an Exoplanet

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This study evaluates the possibility of efficient radio emission generation in the bow shock region of hot Jupiter–type exoplanets. As a source of energetic electrons, the shock drift acceleration mechanism at a quasi-perpendicular shock is proposed. Electrons reflected and accelerated by the shock propagate through the relatively dense stellar wind plasma and excite plasma waves; therefore, a plasma emission mechanism is considered as the source of the resulting radio waves. Using the bow shock of the hot Jupiter HD~189733b as a case study, the properties of the energetic electron beam, the excited plasma waves, and the resulting radio frequencies are estimated. An energy-based analysis is carried out to identify the range of stellar wind parameters for which radio emission from the bow shock of the exoplanet HD~189733b could be detectable by modern astronomical instruments.

Sobre autores

A. Kuznetsov

Gaponov-Grekhov Institute of Applied Physics RAS

Email: kuznetsov.alexey@ipfran.ru
Nizhny Novgorod, Russia

V. Zaitsev

Gaponov-Grekhov Institute of Applied Physics RAS

Nizhny Novgorod, Russia

Bibliografia

  1. Михайловский А.Б. Теория плазменных неустойчивостей. М.: Атомиздат, 1971. 276 с.
  2. Ball L., Melrose D.B. Shock Drift Acceleration of Electrons // Publications of the Astronomical Society of Australia. V. 18. P. 361–373. 2001. https://doi.org/10.1071/as01047.
  3. Bourrier V., Lecavelier des Etangs A. 3D model of hydrogen atmospheric escape from HD209458b and HD189733b: radiative blow-out and stellar wind interactions // Astronomy & Astrophysics. V. 557. P. A124. 2013. https://doi.org/10.1051/0004-6361/201321551.
  4. Bret A., Firpo M.-C., Deutsch C. Collective electromagnetic modes for beam-plasma interaction in the whole // Physical Review E. V. 70. P. 046401. 2004. https://doi.org/10.1103/physreve.70.046401.
  5. De Hoffmann F., Teller E. Magneto-Hydrodynamic Shocks // Physical Review. V. 80. P. 692–703. 1950. https://doi.org/10.1103/physrev.80.692.
  6. Dudik J. et al. Nonequilibrium Processes in the Solar Corona, Transition Region, Flares, and Solar Wind (Invited Review) // Solar Physics. V. 292. P. 100. 2017. https://doi.org/10.1007/s11207-017-1125-0.
  7. Echim M.M., Lemaire J., Lie-Svendsen Ø. A Review on Solar Wind Modeling: Kinetic and Fluid Aspects // Surveys in Geophysics. V. 32. P. 1–70. 2010. https://doi.org/10.1007/s10712-010-9106-y.
  8. Fares R. et al. MOVES – I. The evolving magnetic field of the planet-hosting star HD189733 // Monthly Notices of the Royal Astronomical Society. V. 471. P. 1246–1257. 2017. https://doi.org/10.1093/mnras/stx1581.
  9. Ginzburg V.L. The propagation of electromagnetic waves in plasmas. 1970.
  10. Goodrich C.C., Scudder J.D. The adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionless magnetosonic shock waves // Journal of Geophysical Research: Space Physics. V. 89. P. 6654–6662. 1984. https://doi.org/10.1029/ja089ia08p06654.
  11. Grießmeier J., Zarka P., Girard J.N. Observation of planetary radio emissions using large arrays // Radio Science. V. 46. P. RS0F09. 2011. https://doi.org/10.1029/2011RS004752.
  12. Holman G.D., Pesses M.E. Solar type II radio emission and the shock drift acceleration of electrons // The Astrophysical Journal. V. 267. P. 837. 1983. https://doi.org/10.1086/160918.
  13. Kavanagh R.D. et al. MOVES — II. Tuning in to the radio environment of HD189733b // Monthly Notices of the Royal Astronomical Society. V. 485. P. 4529–4538. 2019. https://doi.org/10.1093/mnras/stz655.
  14. Kichigin G.N. Properties of surfatron acceleration of electrons // JETP. V. 81. No. 4. P. 736–744. 1995.
  15. Kuznetsov A.A. et al. Saturating Magnetic Field of Weibel Instability in Plasmas with Bi-Maxwellian and Bikappa Particle Distributions // Plasma Phys. Rep. Vol. 48. Pp. 973–982. 2022. https://doi.org/10.1134/s1063780x22600700.
  16. Kuznetsov A.A. et al. Quasilinear Simulation of the Development of Weibel Turbulence in Anisotropic Collisionless Plasma // Journal of Experimental and Theoretical Physics. V. 137. P. 966–985. 2023. https://doi.org/10.1134/s1063776123120099.
  17. Liu Z., Wang L., Guo X. Acceleration of Solar Wind Suprathermal Electrons at the Earth’s Bow Shock // The Astrophysical Journal. V. 935. P. 39. 2022. https://doi.org/10.3847/1538-4357/ac8157.
  18. Llama J. et al. The Shocking Variability of Exoplanet Transits // Proceedings of the International Astronomical Union. V. 8. P. 262–265. 2013. https://doi.org/10.1017/s1743921313008521.
  19. Louis C.K. et al. ExPRES: an Exoplanetary and Planetary Radio Emissions Simulator // Astronomy & Astrophysics. V. 627. P. A30. 2019. https://doi.org/10.1051/0004-6361/201935161.
  20. Mann G., Klassen A. Electron beams generated by shock waves in the solar corona // Astronomy & Astrophysics. V. 441. Pp. 319–326. 2005. https://doi.org/10.1051/0004-6361:20034396.
  21. Mann G. et al. Radio signatures of shock-accelerated electron beams in the solar corona // Astronomy & Astrophysics. V. 609. P. A41. 2018. https://doi.org/10.1051/0004-6361/201730546.
  22. Melrose D.B., Hewitt R.G., Dulk G.A. Electron-cyclotron maser emission: Relative growth and damping rates for different modes and harmonics // Journal of Geophysical Research: Space Physics. V. 89. P. 897–904. 1984. https://doi.org/10.1029/ja089ia02p00897.
  23. Odert P. et al. Modeling the Lyα transit absorption of the hot Jupiter HD 189733b // Astronomy & Astrophysics. V. 638. P. A49. 2020. https://doi.org/10.1051/0004-6361/201834814.
  24. Priest E.R. Solar Magnetohydrodynamics. Springer Netherlands, 1982. ISBN 9789400979581. https://doi.org/10.1007/978-94-009-7958-1.
  25. Rumenskikh M.S. et al. Global 3D Simulation of the Upper Atmosphere of HD189733b and Absorption in Metastable He i and Lyα Lines // The Astrophysical Journal. V. 927. P. 238. 2022. https://doi.org/10.3847/1538-4357/ac441d.
  26. Shi C. et al. Proton and Electron Temperatures in the Solar Wind and Their Correlations with the Solar Wind Speed // The Astrophysical Journal. V. 944. P. 82. 2023. https://doi.org/10.3847/1538-4357/acb341.
  27. Stepanov A.V. et al. Second-Harmonic Plasma Radiation of Magnetically Trapped Electrons in Stellar Coronae // The Astrophysical Journal. V. 524. № 2. P. 961–973. 1999. https://doi.org/10.1086/307835
  28. Strugarek A. et al. MOVES — V. Modelling star–planet magnetic interactions of HD 189733 // Monthly Notices of the Royal Astronomical Society. V. 512. P. 4556–4572. 2022. https://doi.org/10.1093/mnras/stac778.
  29. Treumann R.A., Baumjohann W. Advanced Space Plasma Physics. Published by imperial college press, distributed by world scientific publishing co., 1997. ISBN 9781860943072. https://doi.org/10.1142/p020.
  30. Tsytovich V.N. Theory of turbulent plasma. 1977.
  31. Vidotto A.A., Jardine M., Helling C. Early uv ingress in wasp-12b: measuring planetary magnetic fields // The Astrophysical Journal. 2010. Vol. 722. Pp. L168–L172. https://doi.org/10.1088/2041-8205/722/2/L168.
  32. Weibel E.S. Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution // Phys. Rev. Lett. 1959. Vol. 2. Pp. 83–84. https://doi.org/10.1103/physrevlett.2.83.
  33. Wu C.S. A fast Fermi process: Energetic electrons accelerated by a nearly perpendicular bow shock // Journal of Geophysical Research: Space Physics. 1984. Vol. 89. Pp. 8857–8862. https://doi.org/10.1029/ja089ia10p08857.
  34. Wu C.S., Lee L.C. A theory of the terrestrial kilometric radiation // The Astrophysical Journal. 1979. Vol. 230. Pp. 621. https://doi.org/10.1086/157120.
  35. Yang L. et al. Dynamic acceleration of energetic protons by an interplanetary collisionless shock // Astronomy & Astrophysics. 2024. Vol. 686. Pp. A132. https://doi.org/10.1051/0004-6361/202348723.
  36. Zaitsev V.V. et al. Fast electrons in the plasmosphere of the exoplanet HD189733b // Geomagnetism and Aeronomy. 2024. Vol. 64. (In press).
  37. Zaitsev V.V. et al. On the Efficiency of Radio Emissions at the Double Plasma Frequency in the Magnetosphere of Exoplanet HD189733b // Geomagnetism and Aeronomy. 2023. Vol. 63. Pp. 892–898. https://doi.org/10.1134/s0016793223070307.
  38. Zaitsev V.V., Shaposhnikov V.E. Plasma maser in the plasmasphere of HD189733b // Monthly Notices of the Royal Astronomical Society. 2022. Vol. 513. Pp. 4082–4089. https://doi.org/10.1093/mnras/stac1140.
  39. Zaitsev V., Stepanov A. The plasma radiation of flare kernels // Solar Physics. 1983. Vol. 88. Pp. 1–2. https://doi.org/10.1007/bf00196194.
  40. Zheleznyakov V.V. Radiation in Astrophysical Plasmas. Springer Netherlands, 1996. ISBN 9789400902015. https://doi.org/10.1007/978-94-009-0201-5.
  41. Zhilkin A.G., Bisikalo D.V. On Possible Types of Magnetospheres of Hot Jupiters // Astronomy Reports. 2019. Vol. 63. Pp. 550–564. https://doi.org/10.1134/s1063772919070096.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).