Peculiar Features of the Global Magnetic Field Structure of the Sun in Cycles 21–25
- Authors: Bilenko I.A.1
-
Affiliations:
- Sternberg Astronomical Institute, Moscow State University
- Issue: Vol 65, No 7 (2025)
- Pages: 1112–1124
- Section: Articles
- URL: https://ogarev-online.ru/0016-7940/article/view/376081
- DOI: https://doi.org/10.7868/S3034502225070167
- ID: 376081
Cite item
Abstract
Changes in the structure of the global magnetic field (GMF) in cycles 21–24 and at the beginning of cycle 25 are considered. It is shown that the GMF structure differs both in different cycles and at different phases of each cycle. Stable longitudinal structures formed in the epochs of maximum activity display rotation with the Carrington period (CR), which may indicate their connection with local magnetic fields. In each individual structure, two extended longitudinal intervals are distinguished with dominating fields of positive or negative polarity that occupy opposite longitudinal intervals and alternate in the even and odd cycles. An increase in the contribution of the sector structures simultaneously with the increasing chaos in the latter leads to a decrease in the mean magnetic field intensity over a CR in the weak cycles 23–25. It is assumed that the total contribution of changes in the magnetic fields of the polar dipole and the sum of the sector (n=m) and tesseral (n ≠ m ≠ 0) harmonics with even n and odd m are decisive in the formation and cyclic changes in the observed GMF sector structure.
About the authors
I. A. Bilenko
Sternberg Astronomical Institute, Moscow State University
Email: bilenko@sai.msu.ru
Moscow, Russia
References
- Altschuler M.D. and Newkirk G.Jr. Magnetic fields and the structure of the solar corona // Solar Phys. V. 9. P. 131–149. 1969.
- Altschuler M.D., Trotter D.E., Newkirk G.Jr. and Howard R. Tabulation of the harmonic coefficients of the solar magnetic fields // Solar Phys. V. 41. P. 225–226. 1975.
- Altschuler M.D., Levine R.H., Stix M. and Harvey J. High resolution mapping of the magnetic field of the solar corona // Solar Phys. V. 51. P. 345–375. 1977.
- Ambroz P., Bumba V., Howard R. and Sykora J. Opposite polarities in the development of some regularities in the distribution of large-scale magnetic fields // IAUS. V. 43. P. 696–709. 1971.
- Bilenko I.A. Influence of the solar global magnetic-field structure evolution on CMEs // Solar Phys. V. 289. P. 4209–4237. 2014.
- Bilenko I.A. and Tavastsherna K.S. Coronal hole and solar global magnetic field evolution in 1976 – 2012 // Solar Phys. V. 291. P. 2329–2352. 2016.
- Bilenko I.A. and Tavastsherna K.S. Coronal holes as tracers of the Sun’s global magnetic field in cycles 21–23 of solar activity // Geomagn. Aeronomy. V. 57. No. 7. P. 803–813. 2017.
- Bilenko I.A. Manifestation of Rossby waves in the global magnetic field of the Sun during cycles 21–24 // Astrophys. J. Letters. V. 897. L24 (5 pp). 2020.
- Bumba V. and Howard R. Solar activity and recurrences in magnetic field distribution // Solar Phys. V. 7. P. 28–38. 1969.
- Bumba V. and Obridko V.N. ‘Bartels’ active longitudes’, sector boundaries and flare activity // Solar. Phys. V. 6. P. 104–110. 1969.
- Bumba V. Large-scale solar magnetic fields // IAUS. V. 71. P. 47–67. 1976.
- Chapman S. and Bartels J. Geomagnetism. V. 2. Oxford. 1050 p. 1940.
- Hoeksema J.T. and Scherrer P.H. An atlas of photospheric magnetic field observations and computed coronal magnetic fields: 1976–1985 // Solar Phys. V. 105. P. 205–211. 1986.
- Hoeksema J.T. large-scale solar and heliospheric magnetic fields // Adv. Space Res. V. 11. P. 15–24. 1991.
- Insley J.W., Moore V. and Harrison R.A. The differential rotation of the corona as indicated by coronal holes // Solar Phys. V. 160. P. 1–18. 1995.
- Ivanov E.V. and Obridko V.N. Role of the large-scale solar magnetic field structure in the global organization of solar activity // Geomagn. Aeronomy. V. 54. No. 8. P. 996–999. 2014.
- Fainshtein V.G. and Ivanov E.V. Relationship between CME parameters and large-scale structure of solar magnetic fields // Sun Geosphere. V. 5. 28–33. 2010.
- Knoke J. D. Testing for randomness against autocorrelation: The parametric case // Biometrika. V. 62. P. 571–575. 1975.
- Levine R.H. Evolution of photospheric magnetic field patterns during SKYLAB // Solar Phys. V. 54. P. 327–341. 1977.
- McIntosh P.S. Patterns and dynamics of solar magnetic fields and He I coronal holes in cycle 23 // International Solar Cycle Studies Symposium SP–535, ESA. P. 807–818. 2003.
- Obridko V.N. and Shelting B.D. Coronal holes as indicators of large-scale magnetic fields in the corona // Solar Phys. V. 124. P. 73–80. 1989.
- Obridko V.N., Shibalova A.S. and Sokoloff D.D. The extended solar cycle and asymmetry of the large-scale magnetic field // MNRAS. V. 523. P. 982–990. 2023.
- Obridko V.N., Shibalova A.S. and Sokoloff D.D. Cyclic variations of the structure and energetics of solar magnetic fields // MNRAS. V. 529. P. 2846–2853. 2024.
- Sanchez-Ibarra A. and Barraza-Paredes M. Catalog of coronal holes, 1970–1991, Report UAG–102, Boulder: World Data Center A for solar-terrestrial physics, National Geophysical Data Center, 1992.
- Tikhomolov E. Rossby vortices as sources of global magnetic structures on the Sun // Solar Phys. V. 156. P. 205–219. 1995.
- Wald A. and Wolfowitz J. An exact test for randomness in the non parametric case based on serial correlation // AMS. V. 14. P. 378–388. 1943.
- Zhao, Xuepu and Hoeksema J.T. Unique determination of model coronal magnetic fields using photospheric observations // Solar. Phys. V. 143. P. 41–48. 1993.
- Zherebtsov G.A., Kovalenko V.A. and Molodykh S.I. Heliospheric characteristics during fast global variations of solar magnetic fields // J. Geophys. Res. V. 102. P. 2137–2146. 1997.
Supplementary files


