Ultra-High 11-Year Cycles Based on Radiocarbon Reconstruction of Solar Activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The radiocarbon dating curve with a ten-year step has been known for more than half a century and is the main, most precise method of chronology of archaeological finds. Overlapping patterns of the ring thickness of preserved tree remains allow scientists to draw up a chronology for more than 10,000 years. A number of authors have already succeeded in reconstructing secular variations in solar activity for the Holocene. The precision of modern mass spectrometers allows researchers to work with smaller amounts of material, so that more and more chronological curves with an annual time step appear lasting up to 1000 years or more. Such curves, theoretically, should reflect the main, 11-year variations in solar activity. However, the amplitude of 11-year variations in the content of radiocarbon is comparable to the measurement error. The trajectory of a radiocarbon atom after it forms in the atmosphere until it enters a tree ring as a result of carbon exchange between natural reservoirs is very intricate and subject to various changing factors. In this paper, we discuss possible approaches to reconstructing 11-year solar activity cycles from radiocarbon and ways to improve their accuracy. In particular, we obtained a few high 11-year cycles (Wolf numbers up to 500) in the late 12th century, which cannot be revealed by applying excessive smoothing.

About the authors

D. M. Volobuev

The Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo

Email: dmitry.volobuev@mail.ru
St. Petersburg, Russia

I. V. Koudryavtsev

Ioffe Institute of the Russian Academy of Sciences

St. Petersburg, Russia

N. G. Makarenko

The Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo

St. Petersburg, Russia

References

  1. Дорман Л.И. Особенности исследования вариаций космических лучей радиоуглеродным методом // Труды шестого всесоюзного совещания по проблеме “Астрофизические явления и радиоуглерод”. Тбилиси, 13–15 октября 1976 г. Изд-во Тбилисского университета: Тбилиси, 1978. С. 49–96.
  2. Brehm N., Bayliss A., Christi M., et al. Eleven-year solar cycles over the last millennium revealed by radiocarbon in tree rings // Nature Geoscience. V. 14(1). P. 10–15. 2021.
  3. Crowley T.J. Causes of climate change over the past 1000 years // Science. V. 289(5477). P. 270–277. 2000.
  4. Beck J.V., Blackwell B., Clair C.R.St. Inverse Heat Conduction. New York: Wiley, 1985.
  5. Burggraf O.R. An Exact Solution of the Inverse Problem in Heat Conduction Theory and Applications // J. Heat Transfer. V. 86(3). P. 373–380. 1964.
  6. Damon P.E., Long A., Wallick E.I. On the magnitude of the 11-year radiocarbon cycle // Earth and planetary science letters. V. 20(3). P. 300–306. 1973.
  7. Etheridge D.M., Steele L.P., Langenfelds R.L., et al. Historical CO2 record derived from a spline fit (75 year cutoff) of the Law Dome DSS, DE08, and DE08-2 ice cores. 1998.
  8. Genevey A., Gallet Y., Constable C.G., et al. Archeolnt: An upgraded compilation of geomagnetic field intensity data for the past ten millennia and its application to the recovery of the past dipole moment // Geochemistry, Geophysics, Geosystems. V. 9(4). 2008.
  9. Kudryavtsev I.V., Volobuev D.M., Dergachev V.A., et al. Reconstructions of the 14C cosmogenic isotope content from natural archives after the last glacial termination // Geomagnetism and Aeronomy. V. 56. P. 858–862. 2016.
  10. Kudryavtsev I.V., Volobuev D.M., Dergachev V.A., et al. Reconstruction of the Production Rate of Cosmogenic 14C in the Earth’s Atmosphere for 17 000–5000 BC // Geomagnetism and Aeronomy. V. 58. P. 925–929. 2018.
  11. Larionova A.I., Dergachev V.A., Kudryavtsev I.V., et al. Radiocarbon data from the late 18th century as a reflection of solar activity variation, natural climate change, and anthropogenic activity // Geomagnetism and Aeronomy. V. 60. P. 840–845. 2020.
  12. Roth R. and Joos F. A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14C and CO2 records: Implications of data and model uncertainties // Clim. Past. V. 9. P. 1879–1909. 2013.
  13. Stuiver M., Reimer P.J., Brazinaus T.F. High-Precision Radiocarbon Age Calibration for Terrestrial and Marine Samples // Radiocarbon. V. 40. P. 1127–1151. 1998.
  14. Usoskin I.G., Solanki S.K., Krivova N.A., et al. Solar cyclic activity over the last millennium reconstructed from annual 14C data // Astronomy & Astrophysics. V. 649. P. A141. 2021.
  15. Volobuev D.M., Makarenko N.G. Radiocarbon version of 11-year variations in the interplanetary magnetic field since 1250 // Geomagnetism and Aeronomy. V. 55. P. 938–944. 2015.
  16. WDC-SILSO, Royal Observatory of Belgium, Brussels https://www.sidc.be/SILSO/datafiles
  17. Wu Z., Huang N.E. Ensemble empirical mode decomposition: a noise-assisted data analysis method // Advances in Adaptive Data Analysis. V. 1(01). P. 1–41. 2009.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).