Variations in Atmospheric Characteristics in the High-Latitude Area of the Northern Hemisphere During the Solar Proton Events of January 2005
- Authors: Veretenenko S.V1, Koval A.V2
-
Affiliations:
- Ioffe Institute
- St. Petersburg State University
- Issue: Vol 65, No 7 (2025)
- Pages: 1037-1049
- Section: Articles
- URL: https://ogarev-online.ru/0016-7940/article/view/376073
- DOI: https://doi.org/10.7868/S3034502225070089
- ID: 376073
Cite item
Abstract
In this work, we studied variations in the atmospheric characteristics at high latitudes of the Northern Hemisphere associated with a powerful burst of solar activity in the period of January 13–23, 2005, which caused a series of solar proton events, strong magnetic storms, and a deep Forbush decrease of galactic cosmic rays. It is shown that this burst was accompanied by a significant disturbance of the middle and lower atmosphere at high latitudes. The most pronounced changes in the stratospheric circulation (a sharply intensified stratospheric polar vortex) occurred on January 15–19. It coincided with a considerably increased ionization rate in the mesosphere and upper stratosphere, as well as with an increase of the North Atlantic Oscillation index and a weakening of the planetary wave activity. In the lower atmosphere, an intensive regeneration of cyclones was observed near the south-eastern coast of Greenland. Intensification of the polar vortex was accompanied by a noticeable decrease of temperature (by ~10 K) in the stratosphere at latitudes >70°N. A further sharp weakening of the vortex in late January contributed to the onset of a process close to a sudden stratospheric warming. The results of the study suggest that the development of observed atmospheric disturbances was possibly influenced by phenomena associated with a sharp increase in the flare activity on the Sun during January 13–23, 2005, including a series of powerful solar proton events that considerably increased the ionization rate in the middle atmosphere.
About the authors
S. V Veretenenko
Ioffe Institute
Email: s.veretenenko@mail.ioffe.ru
St. Petersburg, Russia
A. V Koval
St. Petersburg State UniversitySt. Petersburg, Russia
References
- Веретененко С.В. Сравнительный анализ коротоковременных эффектов солнечных и галактических космических лучей в эволюции барических систем умеренных широт // Известия РАН. Серия физическая. Т. 81. № 2. С. 281–284. 2017.
- Веретененко С.В., Пудовкин М.И. Эффекты вариаций космических лучей в циркуляции нижней атмосферы // Геомагнетизм и аэрономия. Т. 33. № 6. С. 35–40. 1993.
- Веретененко С.В., Тайл П. Солнечные протонные события и эволюция циклонов в Северной Атлантике // Геомагнетизм и аэрономия. Т. 48. № 4. С. 542–552. 2008.
- Воробьев В.И. Синоптическая метеорология. Л.: Гидрометеоиздат, 1991.
- Янчуковский В.Л. Реакция среднеширотной атмосферы на спорадические вариации космических лучей в регионе Западной Сибири // Солнечно-земная физика. Т. 10. № 4. С. 65–71. 2024.
- Artamonova I., Veretenenko S. Galactic cosmic ray variation influence on baric system dynamics at middle latitudes // J. Atmos. Solar-Terr. Phys. V. 73. No. 2/3. P. 366–370. 2011.
- Baumgaertner A.J.G., Seppälä A., Jöckel P., Ciliverd M.A. Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: Modulation of the NAM index // Atmos. Chem. Phys. V. 11. P. 4521–4531. 2011.
- Bazilevskaya G.A., Usoskin I.G., Fluckiger E.O. et al. Cosmic Ray Induced Ion Production in the Atmosphere // Space Science Review. V. 137(1–4). P. 149–173. 2008.
- Gelaro R., McCarty W., Suarez M.J. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) // J. Climate. V. 30. P. 5419–5454. 2017.
- Gill A.E. Atmosphere-Ocean Dynamics. Academic Press, 1982.
- Holton J.R. An introduction to dynamic meteorology (fourth edition). New York: Elsevier Academic Press. 2004.
- Hurrell J.W., Kushnir Y., Ottersen, G., Visbeck M. An overview of the North Atlantic Oscillation. In: The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Geophysical Monograph Series. P. 1–35. 2003.
- Jackman C.H. Effects of energetic particles on minor constituents of the middle atmosphere // J. Geomag. Geoelectr. V. 43. Suppl. P. 637–646. 1991.
- Jackman C.H., Marsh D.R., Vitt F.M. et al. Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005 // Atmos. Chem. Phys. V. 11. P. 6153–6166. 2011.
- Jucker M. Scaling of Eliassen-Palm flux vectors // Atmos. Sci. Lett. V. 22. No. 4. e1020. 2021.
- Koval A.V., Gavrilov N.M., Pogoreltsev A.I., Savenkova E.N. Comparisons of planetary wave propagation to the upper atmosphere during stratospheric warming events at different QBO phases // J. Atm. Sol.-Terr. Phys. V. 171. P. 201–209. 2018.
- Logachev Yu.I., Bazilevskaya G.A., Vashenyuk E.V. et al. Catalogue of Solar Proton Events in the 23rd Cycle of Solar Activity (1996–2008). Moscow: 2016. http://www.wdcb.ru/stp/data/SPE/Catalog_SPE_23_cycle_SA.pdf
- Miroshnichenko L.I. Solar cosmic rays in the system of solar–terrestrial relations // J. Atm. Sol.-Terr. Phys. V. 70. P. 450–466. 2008.
- Özgüç A., Atac T., Rybák J. Temporal variability of the flare index (1996-2001) // Solar Phys. V. 214. P. 375–396. 2003.
- Rozanov E., Calisto M., Egorova T., Peter T., Schmutz W. Influence of the precipitating energetic particles on atmospheric chemistry and climate // Surv. Geophys. V. 33. P. 483–501. 2012.
- Rösevall J.D., Murtagh D.P., Urban J. et al. A study of ozone depletion in the 2004/2005 Arctic winter based on data from Odin/SMR and Aura/MLS // J. Geophys. Res. V. 113. D13301. 2008.
- Rusch D.W., Gérard J.-C., Solomon S., et al. The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere I. Odd nitrogen // Planet. Space Sci. V. 29. No. 7. P. 767–774. 1981.
- Solomon S., Rusch D.W., Gérard J.-C., et al. The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere: II. Odd hydrogen // Planet. Space Sci. V. 29. No. 8. P. 885–893. 1981.
- Tinsley B.A. The global atmospheric electric circuit and its effects on cloud microphysics // Reports on Progress in Physics. V. 71. No. 6. P. 66801–66900. 2008.
- Tinsley B.A. A working hypothesis for connections between electrically-induced changes in cloud microphysics and storm vorticity, with possible effects on circulation // Adv. Space Res. V. 50. P. 791–805. 2012.
- Tinsley B.A. Uncertainties in evaluating global electric circuit interactions with atmospheric clouds and aerosols, and consequences for radiation and dynamics // J. Geophys. Res. V. 127. e2021D035954. 2022.
- Veretenenko S.V. Stratospheric polar vortex as an important link between the lower atmosphere circulation and solar activity // Atmosphere. V. 13. No. 7. Art No. 1132. 2022.
- Veretenenko S., Thejll P. Effects of energetic solar proton events on the cyclone development in the North Atlantic // J. Atm. Sol.-Terr. Phys. V. 66. P. 393–405. 2004.
- Weeks L.H., Cuikay R.S., Corbin J.R. Ozone measurements in the mesosphere during the solar proton event of 2 November 1969 // J. Atmos. Sci. V. 29. P. 1138–1142. 1972.
Supplementary files


