Phenomenological Models of the 11-Year Solar Periodicity and Its Empirical Rules

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, we describe and analyze a method for constructing phenomenological models of the 11-year solar cycle based on a nonlinear oscillator equation with damping and external noise. It is demonstrated that such models can reproduce the known empirical relationships between the parameters of the cycles: the Waldmeier and Chernosky rules. The Gnevyshev-Ohl rule (understood in its original meaning as “correlation”) proved to be the most difficult to reproduce in a model. In this paper, we discuss possible ways to overcome this difficulty. In edition, the constructed models can reproduce another feature seen in observational data — long periods of reduced global activity or “grand minima”.

About the authors

V. G Ivanov

The Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo

Email: vg.ivanov@gaoran.ru
St. Petersburg, Russia

References

  1. Гневышев М.Н., Оль А.Н. О 22-летнем цикле солнечной активности // Астроном. жур. Т. 25. № 1. С. 18–20. 1948.
  2. Козик С.М. Общий вид одиннадцатилетнего цикла пятнообразовательной деятельности Солнца // Астроном. журн. Т. 26. № 1. С. 28–37. 1949.
  3. Наговицын Ю.А., Осипова А.А., Иванов В.Г. Правило Гневышева—Оля: современный статус // Астроном. журн. Т. 101. № 1. С. 56–64. 2024.
  4. Anderson C.N. A representation of the sunspot-cycle, Terrestrial Magnetism and Atmospheric Electricity // V. 44. No. 2. P. 175–179. 1939.
  5. Aguirre L.A., Letellier C., and Maque J. Forecasting the time series of sunspot numbers // Solar Phys. V. 249. P. 103–120. 2008.
  6. Bracewell R.N. The Sunspot Number Series // Nature. V. 171. P. 649–650. 1953.
  7. Charbonneau P., Beaulieu G., St-Jean C. Fluctuations in Babcock-Leighton Dynamics. II. Revisiting the Gnewshev-Ohl Rule, Astrophysic. J. // V. 658. No. 1. P. 657–662. 2007.
  8. Chernosky E.J. A relationship between the length and activity of sunspot cycles, Publ. Astron. Soc. Pac. // V. 392. P. 241–247. 1954.
  9. Clette F., Svalgaard L., Vaquero J.M., Cliver E.W. Revisiting the sunspot number: A 400-year perspective on the solar cycle // Space. Sci. Rev. V. 186. P. 35–103. 2014. https://www.sidc.be/silso/DATA/SN_ms_tot_V2.0.txt
  10. Durney B.R. On the difference between odd and even solar cycles, Solar Phys. // V. 196. P. 421–426. 2000.
  11. Eddy E.A. The Maunder Minimum // Science. V. 192. No. 4245. P. 1189–1202. 1976.
  12. Gregg D.P. A nonlinear solar cycle model with potential for forecasting on a decadal time scale // Solar Phys. V. 90. P. 185–194. 1984.
  13. Hale G.E. Preliminary Results of an Attempt to Detect the General Magnetic Field of the Sun // Astrophys. J. V. 38. P. 27–98. 1913.
  14. Hathaway D.H., Wilson R.M., Reichmann E.J. The shape of the sunspot cycle // Solar Phys. V. 151. P. 177–190. 1994.
  15. Hathaway D.H. The solar cycle, Living Rev. // Solar Phys. V. 12. Article id. 4. 2015.
  16. Ivanov V.G, Two Links between Parameters of 11-year Cycle of Solar Activity // Geomagn. Aeron. V. 61. No. 7. P. 1029–1034. 2021.
  17. Ivanov V.G. The Link between Lengths and Amplitudes of the Eleven-Year Cycle for the Millennium Sunspot Index Series // Geomagn. Aeron. V. 64. No. 7. P. 1069–1072. 2024.
  18. Karak B.B. Models for the long-term variations of solar activity // Living Rev. Solar Phys. V. 20. Article id. 3. 2023.
  19. Kiselev B.V., Kozlovskii A.E. The role of external forces in an auto-generation model of solar activity // Geomagn. Aeron. V. 33. No. 3. P. 14–19. 1993.
  20. Kiselev B.V., Volobuev D.M, Equation of motion from a geophysical data series // In: 1st International Conference, Control of Oscillations and Chaos Proceedings (Cat. No. 97TH8329). V. 2. P. 246–251. 1997.
  21. Kyvodubsky V.N. Amplification of the Steady Toroidal Magnetic Field in Solar Interior and Asymmetry of Sunspot Activity in Neighbouring Cycles // In: Solar and Stellar Activity Cycles, 26th meeting of the IAU, Joint Discussion 8, 17–18 August 2006, Prague, Czech Republic, JD08, id. 19.
  22. Nagovitsyn Yu.A. A Nonlinear Mathematical Model for the Solar Cyclicity and Prospects for Reconstructing the Solar Activity in the Past // Astron. Lett. V. 23. No. 6. P. 742–748. 1997.
  23. Nagovitsyn Yu.A., Pevtsov A.A. Duffing Oscillator Model of Solar Cycles // Astrophys. J. Lett. V. 888. No. 2. Article id. L26. 2020.
  24. Noble P.L., Wheatland M.S. Modeling the sunspot number distribution with a Fokker–Planck equation // Astrophysic. J. V. 732. No. 1. Article id. 5. 2011.
  25. Solanki S.K., Krivova N.A., Schüssler M., Fligge M. Search for a relationship between solar cycle amplitude and length // Astron. Astrophys. V. 396. P. 1029–1035. 2002.
  26. Spiege, E.A. Chaos and intermittency in the solar cycle // Space Sci. Rev. V. 144. P. 25–51. 2009.
  27. Usoskin I.G. A History of Solar Activity over Millennia // Living Rev. Solar Phys. V. 10. Article id. 1. 2013.
  28. Usoskin I.G., Solanki S.K., Krivova N.A., Hofer B., Kovaltsov G.A., Wacker L., Brehm N., Kromer B. Solar cyclic activity over the last millennium reconstructed from annual “C data” // Astron. Astrophys. V. 649. Article id. A141. 2021.
  29. Volobuev D. “TOY” dynamo to describe the long-term solar activity cycles // Solar Phys. V. 238. P. 421–430. 2006.
  30. Waldmeier M. Neue Eigenschaften der Sonnenfleckenkurve // Astron. Mitt. Eidgenössischen Sternwarte Zürich. V. 14. P. 105–136. 1935.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).