Critical Assessment of the Conventional Views on the Morphology of Sunspot Groups

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The most complex and interesting magnetic configurations of active regions are considered to draw the attention of the community to the problem of significant systematic deviations from the traditional paradigm of an active region (AR) as an emerging bipolar magnetic flux tube. Observations allow us to make the following assumptions. Large spots (including unipolar ones) are stable, deeply rooted features that serve as channels for the emergence of magnetic structures to the surface. Apparently, the convective flows under the photosphere regularly create a configuration that fundamentally differs from the classical bipolar one: a vertical rope-spot and a system of chaotically entangled loops in the vicinity. It was in such magnetic structures that the most powerful flares occurred in Cycles 23, 24, and 25. According to the Crimean magneto-morphological classification (MMC), such magnetic structures — a rope-spot plus a tangle of loops — belong to the class of the highest complexity, B3. The class B3 groups are responsible for extreme flare activity (Abramenko, 2021). Apparently, everything that does not fit into the classical empirical laws of the AR structure is ordered by itself and bears the ultimate load of the magnetic and flare activity of the Sun.

About the authors

V. I. Abramenko

Crimean Astrophysical Observatory of the Russian Academy of Sciences

Email: vabramenko@gmail.com
Nauchny, Crimea, Russia

R. A. Suleimanova

Crimean Astrophysical Observatory of the Russian Academy of Sciences

Nauchny, Crimea, Russia

References

  1. Брей Р., Лоухед Р. Солнечные пятна. М.: Мир, 383 с. 1967.
  2. Витинский Ю.И., Копецкий М., Куклин Г.В. Статистика пятнообразовательной деятельности Солнца. М.: Наука, 296 с. 1986.
  3. Гопасюк С.И., Огирь М.Б., Северный А.Б. и др. Структура магнитных полей и ее изменения в районе солнечных вспышек // Известия Крымской астрофизической обсерватории. Т. 29. С. 15. 1963.
  4. Северный А.Б. Солнце/Развитие астрономии в СССР 1917–1967 гг. Ред. Ю.И. Ефремов. М.: Наука, 475 с. 1967.
  5. Abramenko V.I. Signature of the turbulent component of the solar dynamo on active region scales and its association with flaring activity // Mon. Not. Roy. Astron. Soc. V. 507. I. 3. P. 3698–3706. 2021.
  6. Abramenko V.I., Suleymanova R.A., Zhukova A.V. Magnetic fluxes of solar active regions of different magnetomorphological classes — I. Cyclic variations // Mon. Not. Roy. Astron. Soc. V. 518. I. 3. P. 4746–4754. 2023.
  7. Abramenko V., Yurchyshyn V. Intermittency and Multifractality Spectra of the Magnetic Field in Solar Active Regions // The Astrophysical Journal. V. 722. P. 122–130. 2010.
  8. Abramenko V.I., Zhukova A.V., Kutsenko A.S. Contributions from Different-Type Active Regions Into the Total Solar Unsigned Magnetic Flux // Geomag. Aeron. V. 58. I. 8. P. 1159–1169. 2018.
  9. Babcock H.W. The Topology of the Sun’s Magnetic Field and the 22-YEAR Cycle // The Astrophysical Journal. V. 133. P. 572–587. 1961.
  10. Bai T. Distribution of Flares on the Sun during 1955–1985: “Hot Spots” (Active Zones) Lasting for 30 Years // The Astrophysical Journal. V. 328 P. 860. 1988.
  11. Chen A.Q., Wang J.X., Li J.W., et al. Statistical properties of superactive regions during solar cycles 19–23 // Astronomy and Astrophysics. V. 534. Article id. A47. 2011.
  12. Hale G.E., Ellerman F., Nicholson S.B., et al. The Magnetic Polarity of Sun-Spots // The Astrophysical Journal. V. 49. P. 153–185. 1919.
  13. Hale G.E., Nicholson S.B. The Law of Sun-Spot Polarity // The Astrophysical Journal. V. 62. P. 270. 1925.
  14. Lang K.R. The Sun from Space. Springer, 588 p. 2009.
  15. Leighton R.B. A Magneto-Kinematic Model of the Solar Cycle // The Astrophysical Journal. V. 156. P. 1. 1969.
  16. Pevtsov A.A., Berger M.A., Nindos A., et al. Magnetic Helicity, Tilt, and Twist // Space Sci Rev V. 186. P. 285–324. 2014.
  17. Toriumi S., Wang H. Flare-productive active regions // Liv. Rev. Solar Phys. V. 16. Article id. 3. 2019.
  18. van Driel-Gesztelyi L., Green L.M. Evolution of Active Regions // Liv. Rev. Solar Phys. V. 12. I. 1. P. 1–98. 2015.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).