Acceleration and Scattering of Non- Thermal Electrons with Coordinated Interaction with Non-Stationary Whistler Turbulence Generated by a Given External Source

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The interaction of non-thermal electrons injected into a flare loop and whistler turbulence in it is investigated. Turbulence generated by an external source is considered with spatial and temporal characteristics similar to those of electron injection; it is assumed that both of these processes occur at the same time and in the same place during energy release in a flash. The peculiarities of the non-thermal electron distributions transformation in energy and pitch angles are revealed, taking into account the reverse effect of electrons on the whistlers’ turbulence. It is established that the power of the turbulence source and the turbulent capture of non-thermal electrons significantly affect the process of additional acceleration. In contrast to the model with a given stationary distribution of Whistler turbulence, in the model with a consistent interaction, there is a significant decrease in the energy density of turbulence, which significantly reduces the efficiency of electron acceleration.

About the authors

L. V. Filatov

Nizhny Novgorod University of Architecture and Civil Engineering

Email: filatoviv@yandex.ru
Nizhny Novgorod, Russia

V. F. Melnikov

Central (Pulkovo) Astronomical Observatory of the Russian Academy of Sciences

Email: v.melnikov@gaoran.ru
Saint Petersburg, Russia

References

  1. Беспалов П.А., Трахтенгерц В.Ю. О режимах турбулентной диффузии по питч-углам в геомагнитной ловушке // Физика плазмы. Т. 5. № 2. С. 383–390. 1979.
  2. Веденов А.А., Велихов Е.П., Сагдеев Р.З. Квазилинейная теория плазмы // Ядерный синтез. Т. 2. № 2. С. 465–475. 1962.
  3. Гершман Б.Н., Угаров В.А. Распространение и генерация низкочастотных электромагнитных волн в верхней атмосфере // УФН. Т. 72. Вып. 2. 1960. № 10. С. 235–271.
  4. Зайцев В.В., Степанов А.В. Корональные магнитные арки // УФН. Т. 178. С. 1165–1204. 2008.
  5. Кадомцев Б.Б. Турбулентность плазмы. Вопросы теории плазмы. Т. 4. Атомиздат, 1964, с. 188.
  6. Мальцева О.А., Чернов Г.П. Кинетическое усиление (затухание) вистлеров в солнечной короне // Кинематика и физика небесных тел. Т. 5. № 6. С. 44–54. 1989.
  7. Мельников В.Ф., Горбиков С.П., Резникова В.Э., Шибасаки К. Распределения релятивистских электронов вдоль вспышечных петель // Изв. РАН. Серия физическая. Т. 70. № 10. С. 1472–1474. 2006.
  8. Цытович В.Н. Теория турбулентной плазмы. М.: Атомиздат, 1971, - 420 с.
  9. Arnold H., Drake J.F., Swisdak M. et al. Electron Acceleration during Macroscale Non-Relativistic Magnetic Reconnection // Physical Review Letters. Vol. 126. No. 13. Article id. 135101. 2021.
  10. Avrett E.H., Loeser R. Models of the solar chromosphere and transition region from SUMER and HRTS observations: formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen. // ApJS. V. 175. P. 229–276. 2008.
  11. Charikov Yu.E., Mel'nikov V.F., Kudryavtsev I.V. Intensity and polarization of the hard X-ray radiation of solar flares at the top and footpoints of a magnetic loop // Ge&Ac. V. 52. № 8. P. 1021–1031. 2012.
  12. Filatov L.V., Melnikov V.F. Influence on whistler turbulence on fast electron distribution and their microwave emission in a flare loop // Ge&Ac. V. 57. № 8. P. 1001–1008. 2017.
  13. Filatov L.V., Melnikov V.F. Additional Stochastic Acceleration of Nontermal Electrons during Their Interaction with Whistler Turbulence in Flare // Ge&Ac. V. 62. № 8. P. 1059–1065. 2022.
  14. Filatov L.V., Melnikov V.F. Acceleration of Nonthermal Electrons in Coordinated Interaction with Whistler Turbulence in a Flare Loop // Ge&Ac. V. 63. № 7. P. 1079–1085. 2023.
  15. Filatov L.V., Melnikov V.F. The Efficiency of Acceleration of Nontermal Electrons with Whistler Turbulence in a Flare Loop Depending on Its Frequency Spectrum // Ge&Ac. V. 64. № 8. P. 1367–1375. 2024.
  16. Hamilton R.J., Lu E.T., and Petrosian V. Numerical solution of the time-dependent kinetic equation for electrons in magnetized plasma // Astrophys. J. 1990. Vol. 354. No. 1. Pp. 726–734.
  17. Hamilton R.J., Petrosian V. Stochastic acceleration of electrons and effects of collisions in solar flares // Astrophys. J. V. 398. № 10. P. 350–358. 1992.
  18. Huang G., Melnikov V.F., Ji H., Ning Z. Solar Flare Loops: Observations and Interpretations. Publisher: Springer Singapore, 424 p., 2018.
  19. Kaplan S.A., Tsytovich V.N. Plasma astrophysics. Oxford: Pergamon Press. 1973. 440 p.
  20. Kong X., Hao N., Yao C. Modeling the transport and anisotropy electrons in solar flares // Frontiers in Astronomy and Space Sciences. V. 11. P. 1–10. 2025.
  21. Ma H., Drake J.F., and Swisdak M. Wave Generation and Energetic Electron Scattering in Solar Flares. // Astrophys. J., 2023, 954:21 (10pp.).
  22. Melnikov V.F., Filatov L.V. Conditions for Whistler Generation by Nonthermal Electrons in Flare Loops // Ge&Ac. V. 60. № 8. P. 1126–1131. 2020.
  23. Melnikov V.F., Filatov L.V. Nonthermal Electron Diffusion Modes in Whistler Turbulence in Flare Loops. // Ge&Ac. V. 61. № 8. P. 1189–1196. 2021.
  24. Melrose D.B. Plasma Astrophysics. Volume 2. Sydney – New York. P. 1–421. 1980.
  25. Melrose D.B. Resonant Scattering of Particles and Second Phase acceleration in the solar Corona // Solar Physics. V. 37. № 4. P. 353–365. 1974.
  26. Miller J.A., Ramaty R. Relativistic Electron transport and bremsstrahlung production in solar flares // Astrophys. J. V. 344. № 15. P. 973–990. 1989.
  27. Stepanov A.V., Tsap Y.T. Electron-wistler interaction in coronal loops and radiation signatures // Solar Physics. V. 211. P. 135–154. 2002.
  28. Takasao S., Shibata K. Above-the-loop-top Oscillation and Quasi-periodic Coronal Wave Generation in Solar Flares // Astrophys. J. V. 823. № 2. P. 150–161. 2016.
  29. Viktorov M., Izotov I., Kiseleva E., et al. Kinetic whistler instability in a mirror-confined plasma of a continuous ECR ion source // Physics of Plasmas. V. 30. № 2. P. 1–9. 2023.
  30. Wentzel D.G. Condition for “Storage” of energetic Particles in the Solar Corona // Astrophys. J. V. 208. P. 595–608. 1976.
  31. Yasnov L.V., Chernov G.P. Alternative modeles Zebra patterns in the event on June 21, 2011 // Solar Physics. V. 295. № 13. P. 135–154. 2020.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).