Multidecadal Variations in Solar Activity, Geomagnetic Field, Earth Rotation and Climate
- Authors: Ptitsyna N.G1, Demina I.M1
-
Affiliations:
- St. Petersburg Branch, Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences
- Issue: Vol 65, No 8 (2025)
- Pages: 1227–1240
- Section: Articles
- URL: https://ogarev-online.ru/0016-7940/article/view/376055
- DOI: https://doi.org/10.7868/S3034502225080091
- ID: 376055
Cite item
Abstract
We carried out wavelet and correlation analysis in the range of periods of 20–70 years of the following instrumental data series: the number of sunspots SN in 1700–2020, on the one hand, and the average global temperature and Earth rotation rate, as well as the H and Z components of the geomagnetic field measured in magnetic observatories starting from the end of the 19th century, on the other hand. It was obtained that over the past ~150–170 years, ~40-year and ~20-year variations have been observed in the SN wavelet spectra. In all spectra of geophysical data at this time, 60–70-year variation dominates, in addition, fluctuations with periods from ~20 to ~40 years appear in different time intervals. The rotation rate correlates with the temperature at the level of 0.8 and both processes are almost the same in phase. Their main common period is 69 years. The identified ~60–70-year variations in the spectra of the geomagnetic field are caused by changes in internal sources in the Earth’s liquid core. Our results suggest that the influence of solar activity does not manifest itself in ~60–70 year changes in the magnetic field components, as well as in the temperature of the Earth. At the same time, solar activity appears to be able to contribute directly to temperature changes with periods of ~35 years; the correlation coefficient of the SN and temperature spectra in this period range was ≈0.5.
About the authors
N. G Ptitsyna
St. Petersburg Branch, Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of SciencesSt. Petersburg, Russia
I. M Demina
St. Petersburg Branch, Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences
Email: dim@izmiran.spb.ru
St. Petersburg, Russia
References
- Брагинский С.И. Геомагнитное динамо // Изв. АН СССР. Сер. Физика Земли. НЭ. С. 74–90. 1978.
- Демина И.М., Баталов П.Б., Королева Т.Ю. Синхронность изменений главного геомагнитного поля и флуктуаций скорости вращения земли // Геомагнетизм и аэрономия. Т. 53. № 2. С. 260–270. 2013. https://doi.org/10.7868/s0016794013010069
- Демина И.М., Фарафонова Ю.Г. Дипольная модель главного магнитного поля Земли в XX веке // Геомагнетизм и аэрономия. Т. 44. № 4. С. 565–570. 2004.
- Обридко В.Н., Наговцын Ю.А. Солнечная активность, цикличность и методы прогноза. СПб: ВВМ. 466 с. 2017.
- Птицына Н.Г., Демина И.М. Частотная модуляция как причина возникновения дополнительных ветвей векового цикла Глейсберга в солнечной активности // Геомагнетизм и Аэрономия. Т. 62. № 1. С. 52–66. 2022. DOI: https://doi.org/10.31857/S0016794022600508
- Птицына Н.Г., Демина И.М. Солнечный цикл Швабе в 1000–1700 гг.: варианты длины и амплитуды // Геомагнетизм и Аэрономия. Т. 64. № 2. С. 217.
- Птицына Н.Г., Демина И.М. 35-летний цикл в солнечной активности в 1000–1900 гг. // Геомагнетизм и Аэрономия. Т. 65. 2025.
- Abarca del Rio R., Gambis D., Salstein D., et al: Solar activity and earth rotation variability // Journal of Geodynamics. V. 36. № 3. P. 423–444. 2003. https://doi.org/10.1016/S0264-3707(03)00060-7
- Andronova N.G., Schlesinger M.E. Causes of global temperature changes during the 19th and 20th centuries // Geophys Res Lett. V. 27. № 14. P. 2137–2140. 2000. https://doi.org/10.1029/2000GL006109
- Buffett B.A. Gravitational oscillations in the length of day // Geophys. Res. Lett. V. 23 № 17. P. 2279–2282. 1996. https://doi.org/10.1029/96GL02083
- Barraclough D.R., Carrigan J.G. and Malin S.C.R. Observed geomagnetic field intensity in London since 1820 // Geophys. J. Int. V. 141. № 1. P. 83–99. 2000. https://doi.org/10.1046/j.1365-246X.2000.00062.x
- Braginsky S.I. Torsional magnetohydrodynamic vibrations in the Earth’s core and variations in day length // Geomagn. & Aeron. V. 10. P. 1–8. 1970.
- Braginsky S.I. Analytical description of the secular variations in the geomagnetic field and the rate of rotation of the Earth // Geomagn. & Aeron. V. 22. P. 88–94. 1982.
- Bruckner E. Klimaschwankungen seit 1700 // Geographische Abhandlungen. V. 14. 325 p. 1890.
- Currie R.G. Geomagnetic line spectra – 2 to 70 years // Astrophys. Space Sci. V. 21. P. 425–438. 1973.
- Daubechies I. Ten lectures on wavelets. Philadelphia. Pennsylvania. USA: Society for industrial and applied mathematics. 369 p. 1992. doi: 10.1137/1.9781611970104
- Delworth T.L., Mann M.E. Observed and simulated multidecadal variability in the Northern Hemisphere // Climate Dyn. V. 16. P. 661–676. 2000. https://doi.org/10.1007/s003820000075
- Dickey J.O., Marcus S.L., de Viron O. Air temperature and anthropogenic forcing: Insights from the solid Earth // J. Climate. V. 24. P. 569–574. 2011. https://doi.org/10.1175/2010JCLI3500.1
- Dumberry M., Mound J. Inner core–mantle gravitational locking and the superrotation of the inner core // Geophys. J. Int. V. 181. № 2. P. 806–817. 2010. https://doi.org/10.1111/j.1365-246X.2010.04563.x
- Jault D. Electromagnetic and topographic coupling, and LOD variations. // In: Earth’s Core and Lower Mantle. C.A. Jones, A.M. Soward and K. Zhang. (Eds). Taylor & Francis. London. P. 56–76. 2003.
- Kilifarska N., Bakhmunov V., Melnuk G. Coupling between Geomagnetic Field and Earth’s Climate System // From the book: Magnetosphere and Solar Winds, Humans and Communication. Essa K.S., Khaled H.M., Chemin Y.-H. (Eds). doi: 10.5772/intechopen.103695. 2022
- Lambeck K., Cazenave A. Long Term Variations in the Length of Day and Climatic Change // Geophys. J. Int. V. 46. P. 555–573. 1976. https://doi.org/10.1111/j.1365-246X.1976.tb01248.x
- Malin S.C.R., Bullard E.C. The direction of the Earth’s magnetic field at London, 1570–1575 // Phil. Trans. R. Soc. Lond. A. V. 299. P. 357–423. 1981.
- Mazzarella A., Scafetta N. Evidences for a quasi 60-year North Atlantic Oscillation since 1700 and its meaning for global climate changes // Theor. Appl. Climatol. V. 107. P. 599–609. 2012. https://doi.org/10.1007/s00704-011-0499-4
- Morice C.P., Kennedy J.J., Rayner N.A., et al. An updated assessment of near-surface temperature change from 1850: the HadCRUT5 dataset. // Journal of Geophysical Research. V. 126. e2019JD032361. 2021. doi: 10.1029/2019JD032361
- Osborn T.J., Jones P.D., Lister D.H., et al. Land surface air temperature variations across the globe updated to 2019: the CRUTEM5 dataset // Journal of Geophysical Research: Atmospheres. V. 126. e2019JD032352. 2021. doi: 10.1029/2019JD032352
- Roberts P.H., Yu Z.J., Russell C.T. On the 60-year signal from the core // Geophysical and Astrophysical Fluid Dynamics. V. 101. № 1. P. 11–35. 2007. doi: 10.1080/03091920601083820
- Schlesinger M.E., Ramankutty N. An oscillation in the global climate system of period 65–70 years // Nature. V. 367(6465). P. 723–726. 1994. https://doi.org/10.1038/367723a0
- Song X., Richards P.G. Seismological evidence for differential rotation of the earth’s inner core // Nature. V. 382(6588). P. 221–224. 1996. https://doi.org/10.1038/382221a0
- Veretenenko S., Ogurtsov M. Manifestation and possible reasons of 60-year oscillations in solar-atmospheric links // Advances in Space Research. V. 64. № 1. P. 104–116. 2019. https://doi.org/10.1016/j.asr.2019.03.022
- Veretenenko S., Ogurtsov M., Obridko V. Long-term variability in occurrence frequencies of magnetic storms with sudden and gradual commencements // J. Atm. Sol. Ter. Phys. V. 205. Article No. 105295. 2020. https://doi.org/10.1016/j.jastp.2020.105295
- Yang Y., Song X. Temporal changes of the inner core from globally distributed repeating earthquakes // J. Geophys. Res.: Solid Earth. V. 125. № 3. e2019JB018652. 2020. https://doi.org/10.1029/2019JB018652
- Yang Y., Song X. Multidecadal variation of the earth’s inner-core rotation // Nature Geoscience. V. 16. P. 182–187. 2023. https://doi.org/10.1038/s41561-022-01112-z
- Zhang J., Song X., Li Y., Richards P.G., Sun X. and Waldhauser F. Inner core differential motion confirmed by earthquake waveform doublets // Science. V. 309(5739). P. 1357–1360. 2005. doi: 10.1126/science.1113193
- Zotov L., Bizouard C., Shum C.K. A possible interrelation between Earth rotation and climatic variability at decadal timescale // Geodesy and Geodynamics. V. 7. P. 216–222. http://dx.doi.org/10.1016/j.geog.2016.05.005.2016
Supplementary files


