Multidecadal Variations in Solar Activity, Geomagnetic Field, Earth Rotation and Climate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We carried out wavelet and correlation analysis in the range of periods of 20–70 years of the following instrumental data series: the number of sunspots SN in 1700–2020, on the one hand, and the average global temperature and Earth rotation rate, as well as the H and Z components of the geomagnetic field measured in magnetic observatories starting from the end of the 19th century, on the other hand. It was obtained that over the past ~150–170 years, ~40-year and ~20-year variations have been observed in the SN wavelet spectra. In all spectra of geophysical data at this time, 60–70-year variation dominates, in addition, fluctuations with periods from ~20 to ~40 years appear in different time intervals. The rotation rate correlates with the temperature at the level of 0.8 and both processes are almost the same in phase. Their main common period is 69 years. The identified ~60–70-year variations in the spectra of the geomagnetic field are caused by changes in internal sources in the Earth’s liquid core. Our results suggest that the influence of solar activity does not manifest itself in ~60–70 year changes in the magnetic field components, as well as in the temperature of the Earth. At the same time, solar activity appears to be able to contribute directly to temperature changes with periods of ~35 years; the correlation coefficient of the SN and temperature spectra in this period range was ≈0.5.

About the authors

N. G Ptitsyna

St. Petersburg Branch, Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences

St. Petersburg, Russia

I. M Demina

St. Petersburg Branch, Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences

Email: dim@izmiran.spb.ru
St. Petersburg, Russia

References

  1. Брагинский С.И. Геомагнитное динамо // Изв. АН СССР. Сер. Физика Земли. НЭ. С. 74–90. 1978.
  2. Демина И.М., Баталов П.Б., Королева Т.Ю. Синхронность изменений главного геомагнитного поля и флуктуаций скорости вращения земли // Геомагнетизм и аэрономия. Т. 53. № 2. С. 260–270. 2013. https://doi.org/10.7868/s0016794013010069
  3. Демина И.М., Фарафонова Ю.Г. Дипольная модель главного магнитного поля Земли в XX веке // Геомагнетизм и аэрономия. Т. 44. № 4. С. 565–570. 2004.
  4. Обридко В.Н., Наговцын Ю.А. Солнечная активность, цикличность и методы прогноза. СПб: ВВМ. 466 с. 2017.
  5. Птицына Н.Г., Демина И.М. Частотная модуляция как причина возникновения дополнительных ветвей векового цикла Глейсберга в солнечной активности // Геомагнетизм и Аэрономия. Т. 62. № 1. С. 52–66. 2022. DOI: https://doi.org/10.31857/S0016794022600508
  6. Птицына Н.Г., Демина И.М. Солнечный цикл Швабе в 1000–1700 гг.: варианты длины и амплитуды // Геомагнетизм и Аэрономия. Т. 64. № 2. С. 217.
  7. Птицына Н.Г., Демина И.М. 35-летний цикл в солнечной активности в 1000–1900 гг. // Геомагнетизм и Аэрономия. Т. 65. 2025.
  8. Abarca del Rio R., Gambis D., Salstein D., et al: Solar activity and earth rotation variability // Journal of Geodynamics. V. 36. № 3. P. 423–444. 2003. https://doi.org/10.1016/S0264-3707(03)00060-7
  9. Andronova N.G., Schlesinger M.E. Causes of global temperature changes during the 19th and 20th centuries // Geophys Res Lett. V. 27. № 14. P. 2137–2140. 2000. https://doi.org/10.1029/2000GL006109
  10. Buffett B.A. Gravitational oscillations in the length of day // Geophys. Res. Lett. V. 23 № 17. P. 2279–2282. 1996. https://doi.org/10.1029/96GL02083
  11. Barraclough D.R., Carrigan J.G. and Malin S.C.R. Observed geomagnetic field intensity in London since 1820 // Geophys. J. Int. V. 141. № 1. P. 83–99. 2000. https://doi.org/10.1046/j.1365-246X.2000.00062.x
  12. Braginsky S.I. Torsional magnetohydrodynamic vibrations in the Earth’s core and variations in day length // Geomagn. & Aeron. V. 10. P. 1–8. 1970.
  13. Braginsky S.I. Analytical description of the secular variations in the geomagnetic field and the rate of rotation of the Earth // Geomagn. & Aeron. V. 22. P. 88–94. 1982.
  14. Bruckner E. Klimaschwankungen seit 1700 // Geographische Abhandlungen. V. 14. 325 p. 1890.
  15. Currie R.G. Geomagnetic line spectra – 2 to 70 years // Astrophys. Space Sci. V. 21. P. 425–438. 1973.
  16. Daubechies I. Ten lectures on wavelets. Philadelphia. Pennsylvania. USA: Society for industrial and applied mathematics. 369 p. 1992. doi: 10.1137/1.9781611970104
  17. Delworth T.L., Mann M.E. Observed and simulated multidecadal variability in the Northern Hemisphere // Climate Dyn. V. 16. P. 661–676. 2000. https://doi.org/10.1007/s003820000075
  18. Dickey J.O., Marcus S.L., de Viron O. Air temperature and anthropogenic forcing: Insights from the solid Earth // J. Climate. V. 24. P. 569–574. 2011. https://doi.org/10.1175/2010JCLI3500.1
  19. Dumberry M., Mound J. Inner core–mantle gravitational locking and the superrotation of the inner core // Geophys. J. Int. V. 181. № 2. P. 806–817. 2010. https://doi.org/10.1111/j.1365-246X.2010.04563.x
  20. Jault D. Electromagnetic and topographic coupling, and LOD variations. // In: Earth’s Core and Lower Mantle. C.A. Jones, A.M. Soward and K. Zhang. (Eds). Taylor & Francis. London. P. 56–76. 2003.
  21. Kilifarska N., Bakhmunov V., Melnuk G. Coupling between Geomagnetic Field and Earth’s Climate System // From the book: Magnetosphere and Solar Winds, Humans and Communication. Essa K.S., Khaled H.M., Chemin Y.-H. (Eds). doi: 10.5772/intechopen.103695. 2022
  22. Lambeck K., Cazenave A. Long Term Variations in the Length of Day and Climatic Change // Geophys. J. Int. V. 46. P. 555–573. 1976. https://doi.org/10.1111/j.1365-246X.1976.tb01248.x
  23. Malin S.C.R., Bullard E.C. The direction of the Earth’s magnetic field at London, 1570–1575 // Phil. Trans. R. Soc. Lond. A. V. 299. P. 357–423. 1981.
  24. Mazzarella A., Scafetta N. Evidences for a quasi 60-year North Atlantic Oscillation since 1700 and its meaning for global climate changes // Theor. Appl. Climatol. V. 107. P. 599–609. 2012. https://doi.org/10.1007/s00704-011-0499-4
  25. Morice C.P., Kennedy J.J., Rayner N.A., et al. An updated assessment of near-surface temperature change from 1850: the HadCRUT5 dataset. // Journal of Geophysical Research. V. 126. e2019JD032361. 2021. doi: 10.1029/2019JD032361
  26. Osborn T.J., Jones P.D., Lister D.H., et al. Land surface air temperature variations across the globe updated to 2019: the CRUTEM5 dataset // Journal of Geophysical Research: Atmospheres. V. 126. e2019JD032352. 2021. doi: 10.1029/2019JD032352
  27. Roberts P.H., Yu Z.J., Russell C.T. On the 60-year signal from the core // Geophysical and Astrophysical Fluid Dynamics. V. 101. № 1. P. 11–35. 2007. doi: 10.1080/03091920601083820
  28. Schlesinger M.E., Ramankutty N. An oscillation in the global climate system of period 65–70 years // Nature. V. 367(6465). P. 723–726. 1994. https://doi.org/10.1038/367723a0
  29. Song X., Richards P.G. Seismological evidence for differential rotation of the earth’s inner core // Nature. V. 382(6588). P. 221–224. 1996. https://doi.org/10.1038/382221a0
  30. Veretenenko S., Ogurtsov M. Manifestation and possible reasons of 60-year oscillations in solar-atmospheric links // Advances in Space Research. V. 64. № 1. P. 104–116. 2019. https://doi.org/10.1016/j.asr.2019.03.022
  31. Veretenenko S., Ogurtsov M., Obridko V. Long-term variability in occurrence frequencies of magnetic storms with sudden and gradual commencements // J. Atm. Sol. Ter. Phys. V. 205. Article No. 105295. 2020. https://doi.org/10.1016/j.jastp.2020.105295
  32. Yang Y., Song X. Temporal changes of the inner core from globally distributed repeating earthquakes // J. Geophys. Res.: Solid Earth. V. 125. № 3. e2019JB018652. 2020. https://doi.org/10.1029/2019JB018652
  33. Yang Y., Song X. Multidecadal variation of the earth’s inner-core rotation // Nature Geoscience. V. 16. P. 182–187. 2023. https://doi.org/10.1038/s41561-022-01112-z
  34. Zhang J., Song X., Li Y., Richards P.G., Sun X. and Waldhauser F. Inner core differential motion confirmed by earthquake waveform doublets // Science. V. 309(5739). P. 1357–1360. 2005. doi: 10.1126/science.1113193
  35. Zotov L., Bizouard C., Shum C.K. A possible interrelation between Earth rotation and climatic variability at decadal timescale // Geodesy and Geodynamics. V. 7. P. 216–222. http://dx.doi.org/10.1016/j.geog.2016.05.005.2016

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).