Dynamics of the Total Electric Current and its Components in ARs With Different Levels of Flare Activity
- Authors: Fursyak Y.A.1
-
Affiliations:
- Crimean Astrophysical Observatory of the RAS
- Issue: Vol 65, No 8 (2025)
- Pages: 1206–1220
- Section: Articles
- URL: https://ogarev-online.ru/0016-7940/article/view/376052
- DOI: https://doi.org/10.7868/S3034502225080072
- ID: 376052
Cite item
Abstract
The work is aimed at studying the dynamics of the total electric current and its vertical and horizontal components in active regions (ARs) with different levels of flare activity. The electric current was calculated using Helioseismic and Magnetic Imager (HMI/SDO) data on the spatial distribution of the magnetic field vector components in the photosphere. 73 ARs observed in Cycle 24 were studied. Monitoring of each AR was carried out within ±35° relative to the central solar meridian, which corresponds to a time interval of 3–5 days. A number of features were identified in the behavior of the AR electric currents. In particular, it was shown that: 1) The absolute value of the total electric current density in most of the cases considered is determined by the horizontal electric current, which has a density 1.5–4.5 times higher than that of the vertical electric current. 2) In nine active regions (12% of all ARs analyzed), time intervals were identified when the mean unsigned density of the vertical electric current was approximately equal to or higher than the mean unsigned density of the horizontal electric current. 3) In ARs NOAA 11158 and 12673, in which an additional emergence of the magnetic flux was recorded during the monitoring period, an increase in the vertical, horizontal, and total electric currents occurred 18–20 hours before the first solar flares of high X-ray classes appeared. The growth time of the electric current parameters is significantly less than the growth time of the total unsigned magnetic flux of AR. 4) The highest absolute values of the total electric current density were recorded in ARs with a medium solar flare activity.
Keywords
About the authors
Yu. A. Fursyak
Crimean Astrophysical Observatory of the RAS
Email: yuriy_fursyak@mail.ru
Nauchny, Crimea, Russia
References
- Абраменко В.И., Гопасюк С.И. Система электрических токов и структура магнитного поля активной области // Изв. Крымск. астрофиз. обс. Т. 76. С. 147–168. 1987.
- Жукова А.В. Каталог активных областей 24-го цикла // Изв. Крымск. астрофиз. обс. Т. 114. № 2. С. 74–86. 2018.
- Иошпа Б.А., Могилевский Э.И. Магнитограф ИЗМИРАН для определения продольной составляющей магнитных полей активных областей // Солнечная активность. № 2. 1965.
- Котов В.А. Магнитное поле и электрические токи униполярного солнечного пятна // Изв. Крымск. астрофиз. обс. Т. 41–42. С. 67–88. 1970.
- Кузнецов Д.А., Куклин Г.В., Степанов В.Е. Солнечный магнитограф и регистратор лучевых скоростей // Результаты наблюдений и исследований в период МГСС. Вып. 1. 1966.
- Северный А.Б. О магнитных полях на разных глубинах солнечной атмосферы // Астрономический журнал. Т. 43. № 3. С. 465–479. 1966.
- Степанов В.Е., Северный А.Б. Фотоэлектрический метод измерения величины и направления магнитного поля на поверхности Солнца // Изв. Крымск. астрофиз. обс. Т. 28. С. 166–193. 1962.
- Фурсяк Ю.А. Полный электрический ток в активных областях с разным уровнем вспышечной продуктивности: первые результаты // Изв. Крымск. Астрофиз. Обсерв. Т. 120. № 4. С. 46–55. 2024.
- Abramenko V.I. Relationship between magnetic power spectrum and flare productivity in solar active regions // Astrophys. J. V. 629. Issue 2. P. 1141–1149. 2005.
- Abramenko V.I. Spectrum of Magnetic Dissipation and Horizontal Electric Currents in the Solar Photosphere // eprint arXiv:0806.1547. 2008.
- Abramenko V.I. Signature of the turbulent component of the solar dynamo on active region scales and its association with flaring activity // Monthly Notices of the Royal Astronomical Society. V. 507. Issue 3. P. 3698–3706. 2021.
- Abramenko V.I., Zhukova A.V., Kutsenko A.S. Contributions from different-type active regions into the total solar unsigned magnetic flux // Geomagnetism and Aeronomy. V. 58. Issue 8. P. 1159–1169. 2018.
- Alfven H., Carlquist S.P. Currents in the Solar Atmosphere and a Theory of Solar Flares // Solar Physics. V. 1. Issue 2. P. 220–228. 1967.
- Bakunina I.A., Melnikov V.F., Shain A.V., Kuznetsov S.A., Abramov-Maximov V.E. Spatial Position of Magnetic Flux Ropes in Flare Active Regions with and without Coronal Mass Ejections // Geomagnetism and Aeronomy. V. 64. No. 8. P. 1237–1249. 2024.
- Bobra M.G., Sun X., Hoeksema J.T., et al. The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs – Space-Weather HMI Active Region Patches // Solar Phys. V. 289. Issue 9. P. 3549–3578. 2014.
- Fursyak Yu.A. Vertical Electric Currents in Active Regions: Calculation Methods and Relation to the Flare Index // Geomagnetism and Aeronomy. V. 58. Issue 8. P. 1129–1135. 2018.
- Fursyak Yu.A., Abramenko V.I. Possibilities for Estimating Horizontal Electrical Currents in Active Regions on the Sun // Astrophysics. V. 60. Issue 4. P. 544–552. 2017.
- Fursyak Yu.A., Abramenko V.I., Kutsenko A.S. Dynamics of Electric Current’s Parameters in Active Regions on the Sun and Their Relation to the Flare Index // Astrophysics. V. 63. Issue 2. P. 260–273. 2020.
- Hofmann A., Staude J. Electric current density in the sunspot photosphere derived from vector magnetograms // Publications of the Astronomical Institute of the Czechoslovak Academy of Sciences. V. 66. P. 105–107. 1987.
- Ji H.S., Song M.T., Li X.Q., Hu F.M. Estimating Horizontal Electric Current in Solar Active Regions // Solar Physics. V. 182. Issue 2. P. 365–379. 1998.
- Kotov V.A. On the Structure of Magnetic Field and Electric Currents of a Unipolar Sunspot // Solar Magnetic Fields. IAU Symposium. V. 43. P. 212–219. 1971.
- Livingston W.C. Magnetograph Observations of the Quiet Sun. I. Spatial Description of the Background Fields // Astrophysical Journal. V. 153. P. 929–942. 1968.
- Melnikov V.F., Meshalkina N.S. Contraction Effect of Coronal Loops during the Flare of February 24, 2023 // Geomagnetism and Aeronomy. V. 64. No. 8. P. 1381–1385. 2024.
- Nechaeva A.B., Zimovets I.V., Zubik V.S., Sharykin I.N. Evolution of Characteristics of Vertical Electric Current and Magnetic Field in Active Regions of the Sun and Their Relation to Powerful Flares // Geomagnetism and Aeronomy. V. 64. No. 2. P. 150–171. 2024.
- Pesnell W.D., Thompson B.J., Chamberlin P.C. The Solar Dynamics Observatory (SDO) // Solar Phys. V. 275. Issue 1–2. P. 3–15. 2012.
- Scherrer P.H., Schou J., Bush R.I., et al. The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO) // Solar Phys. V. 275. Issue 1–2. P. 207–227. 2012.
- Severnyi A.B. The Nature of Solar Magnetic Fields (The Fine Structure of the Field) // Soviet Astronomy. V. 9. No. 2. P. 171–182. 1965.
- Solov’ev A.A. Flare filament with the force free structure of the magnetic field // Geomagnetism and Aeronomy. V. 64. No. 7. P. 188–194. 2024.
- Solov’ev A.A. Force free magnetic flux rope with high electric current density on the axis // Astronomical Reports. V. 68. No. 6. P. 601–609. 2024.
- Solov’ev A.A., Kirichek E.A. Magnetic Flux Ropes with a Current Shell As Flaring Solar Structures // Astronomy Letters. V. 50. No. 9. P. 584–592. 2024.
- Sun X., Hoeksema J.T, Liu Y., Wiegelmann T., Hayashi K., Chen Q., Thalmann J. Evolution of Magnetic Field and Energy in a Major Eruptive Active Region Based on SDO/HMI Observation // Astrophysical Journal. V. 748. Article id. 77. 2012.
- Rayrole J., Semel M. Evaluation of the electric current in a sunspot by the study of the observed transverse component of the magnetic field // Astron. Astrophys. V. 6. P. 288–293. 1970.
- Wang R., Liu Y.D., Hoeksema J.T., Zimovets I.V., Liu Y. Roles of Photospheric Motions and Flux Emergence in the Major Solar Eruption on 2017 September 6 // Astrophysical Journal. V. 869. Article id. 90. 2018.
Supplementary files


