Interpretation of the Gnevyshev–Ohl Effect and Modulation of Galactic Cosmic Rays by Solar Activity
- Authors: Grigorieva I.Y.1, Ozheredov V.A.2, Struminsky A.B.2
-
Affiliations:
- Main (Pulkovo) Astronomical Observatory
- Space Research Institute
- Issue: Vol 65, No 8 (2025)
- Pages: 1183–1194
- Section: Articles
- URL: https://ogarev-online.ru/0016-7940/article/view/376050
- DOI: https://doi.org/10.7868/S3034502225080055
- ID: 376050
Cite item
Abstract
About the authors
I. Yu. Grigorieva
Main (Pulkovo) Astronomical Observatory
Email: irina.2014.irina@mail.ru
Saint-Petersburg, Russia
V. A. Ozheredov
Space Research InstituteMoscow, Russia
A. B. Struminsky
Space Research Institute
Email: astrum@cosmos.ru
Moscow, Russia
References
- Белов А.В., Гущина Р.Т., Обридко В.Н., Шельтинг Б.Д., Янке В.Г. Прогноз и эпитиз долгопериодных вариаций космических лучей на основе различных индексов солнечной активности // Изв. РАН, сер. физ. Т. 69. № 6. С. 890–892. 2005.
- Гневышев М. Н., Оль А. И. О 22-летнем цикле солнечной активности. // Астрон. ж. 1948. Т. 25. № 1. С. 18–20.
- Гущина Р. Т., Белов А. В., Янке В. Г. Спектр долгопериодных вариаций в минимуме солнечной активности 2009 // Изв. РАН, сер. физ. Т. 77. № 5. С. 577–580. 2013. https://doi.org/10.7868/S0367676513050244
- Ишков В. Н. Итоги и уроки 24 цикла – первого цикла второй эпохи пониженной солнечной активности // Астрон. ж. 2022. Т. 99. № 1. С. 54–69. https://doi.org/10.31857/S0004629922020050
- Струминский А. Б., Белов А. В., Гущина Р. Т., Янке В. Г., Григорьев А. Ю. О прогнозе модуляции галактических космических лучей в 25-ом цикле солнечной активности // Геомагнетизм и Аэрономия. 2025. (В печати).
- Babcock H. W. The topology of the Sun’s magnetic field and the 22-year cycle //Astrophys. J. V. 133. P. 572. 1961. https://doi.org/10.1086/147060
- Bravo S., Stewart G. The Inclination of the Heliomagnetic Equator and the Presence of an Inclined Relic Field in the Sun // Astrophys. J. 1995. V. 446. P. 431.
- Charbonneau P. Dynamo models of the solar cycle // Living Reviews in Solar Physics. V. 17. Iss. 4. 2020. https://doi.org/10.1007/s41116-020-00025-6
- Cliver E. W., von Steiger R. Minimal Magnetic States of the Sun and the Solar Wind: Implications for the Origin of the Slow Solar Wind // Space Sci Rev. 2017. V. 210. P. 227–247. https://doi.org/10.1007/s11214-015-0224-1
- Cliver E. W., White S. M., Richardson I. G. A Floor in the Sun’s Photospheric Magnetic Field: Implications for an Independent Small-scale Dynamo // Astrophys. J. Let. 2024. V. 961. L46 (7pp). https://doi.org/10.3847/2041-8213/ad192e
- Iijima H., Hotta H., Imada S., Kusano K., Shiota D. Improvement of solar-cycle prediction: Plateau of solar axial dipole moment // A&A. 607. L2 (2017). https://doi.org/10.1051/0004-6361/201731813
- Jiang J., Cameron R. H., Schüssler M. The cause of the weak solar cycle 24 // Astrophys. J. Let. 2015. V. 820. P. L28–L34. https://doi.org/10.1088/2041-8205/808/1/L28
- Kumar P., Karak B. B., Sreedevi A. Variabilities in the polar field and solar cycle due to irregular properties of bipolar magnetic regions // MNRAS. 2024. V. 530. P. 2895–2905. https://doi.org/10.1093/mnras/stae1052
- Leighton R. B. Transport of magnetic fields on the Sun // Astrophys. J. V. 140. P. 1547–1562. 1964. https://doi.org/10.1086/148058
- Leighton R. B. A magneto-kinematic model of the solar cycle // Astrophys. J. 1969. V. 156. P. 1–26. https://doi.org/10.1086/149943
- Levy E. H., Boyer D. Oscillating Dynamo in the Presence of a Fossil Magnetic Field. The Solar Cycle // Astrophys. J. 1982. V. 254. P. L19–L22.1
- Mordvinov A.V., Kitchatinov L.L. Active Longitudes and North-South Asymmetry of the Activity the Sun as Manifestations of Its Relic Magnetic Field // Astron. Rep. 2004. V. 48. No. 3. P. 254–260. https://doi.org/10.1134/1.1687019
- Mursula K., Usoskin I.G., Kovaltsov G.A. Persistent 22-year Cycle in Sunspot Activity: Evidence for a Relic Solar Magnetic Field // Sol. Phys. 2001. V. 198. P. 51–56.
- Nagovitsyn Yu.A. Confirmation of the “Lost” Cycle and the Gnevyshev–Ohl Rule in a Series of Sunspot Areas Spanning 410 Years // Astron. Let. 2024. V. 50. No. 8. P. 529–535. https://doi.org/10.1134/S1063773724700397
- Nagovitsyn Y.A., Ivanov V.G. Solar Cycle Pairing and Prediction of Cycle 25 // Sol. Phys. 2023. V. 298. P. 37. https://doi.org/10.1007/s11207-023-02121-w
- Nandy D. Progress in Solar Cycle Predictions: Sunspot Cycles 24–25 in Perspective // Sol. Phys. 2021. V. 296. P. 54. https://doi.org/10.1007/s11207-021-01797-2
- Pal S., Nandy D. Algebraic quantification of the contribution of active regions to the Sun’s dipole moment: applications to century-scale polar field estimates and solar cycle forecasting // MNRAS. V. 531. P. 1546–1553. 2024. https://doi.org/10.1093/mnras/stae1205
- Petrovay K. Solar cycle prediction. Living Rev. Sol. Phys. V. 17: 2. 2020. https://doi.org/10.1007/s41116-020-0022-z
- Piddington J. H. Solar manetic field and convection: the primordial field theory // in Basic Mechanism of Solar Activity IAU Sympos. No. 71. Reidel 1976. P. 389–407.
- Pipin V.V., Kosovichev A.G., Tomin V.E. Effects of Emerging Bipolar Magnetic Regions in Mean-field Dynamo Model of Solar Cycles 23 and 24 // Astrophys. J. V. 949. P. 7 (13pp). https://doi.org/10.3847/1538-4357/acaf69
- Pudovkin M.I., Benevolenskaya E.E. The Oyasi-steady Primordial Magnetic Field of the Sun, and the Intensity Variations of the Solar Cycle // Sov. Astron. Let. 1982. V. 8. No. 4. P. 273–274.
- Schrijver C.J., Livingston W.C., Woods T.N., Mewaldt R.A. The minimal solar activity in 2008–2009 and its implications for long-term climate modeling // Geophys. Res. Let. 2011. V. 38. L06701. https://doi.org/10.1029/2011GL046658
- Tlatov A.G. Reversals of Gnevyshev–Ohl Rule // Astrophys. J. Let. V. 72. L30 (4pp). https://doi.org/10.1088/2041-8205/772/2/L30
- Tlatov A.G. The change of the solar cyclicity mode // JASR. 2015. V. 55. P. 851–85. https://doi.org/10.1016/j.asr.2014.06.024
Supplementary files


