On the Possibility of Using Decayless Kink Oscillations of Coronal Loops to Forecast Powerful Solar Flares and Coronal Mass Ejections

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper studies decayless kink oscillations of solar coronal loops and changes in their behavior in active regions (ARs) before powerful solar flares (class M- and X) and in the absence of powerful flares. To this end, we examined 14 ARs with and 14 ARs without powerful flares. For each event, images obtained during 4 hours before the flare in the 171 Å and 94 Å AIA/SDO channels at 12-second intervals were analyzed. For ARs without powerful flares, arbitrary time intervals of similar duration were considered. Since the decayless oscillations have very low amplitude (1–2 AIA/SDO pixels), we used the Motion Magnification technique to amplify the amplitude of these oscillations. Time-distance maps were constructed using the processed images in the 171 Å channel, from which oscillatory patterns were extracted “manually”. Wavelet analysis was performed to detect changes in the oscillation period. No systematic changes were found. No obvious differences in the behavior of oscillations in ARs with and without powerful flares were detected either. In addition, information was obtained on coronal mass ejections (CMEs) from ARs in the vicinity of the time intervals under consideration. Based on the study of a small sample of events, we came to a preliminary conclusion that the registration and analysis of decayless kink oscillations of high (~100–600 Mm) coronal loops by the above method is not promising for predicting powerful flares and CMEs.

About the authors

A. B. Nechaeva

Space Research Institute of RAS

Email: nechaeva.workspace@gmail.com
Moscow, Russia

I. V. Zimovets

Space Research Institute of RAS

Moscow, Russia

I. N. Sharykin

Space Research Institute of RAS

Moscow, Russia

S. A. Anfinogentov

Space Research Institute of RAS; Institute of Solar-Terrestrial Physics of the Siberian Branch of RAS

Moscow, Russia; Irkutsk, Russia

References

  1. Жданов А.А., Чариков Ю.Е. Частотный анализ предвспышечного рентгеновского излучения Солнца // Письма в Астрон. Ж. Т. 11. С. 216–221. 1985.
  2. Abramov-Maximov V.E., Bakunina I.A. Oscillations of the Microwave Emission of Solar Active Region 12673 before Flares // Geomagnetism and Aeronomy. V. 59. No. 7. P. 822–826. 2020. https://doi.org/10.1134/S001679321907003X.
  3. Afanasjev A.N., Van Doorsselaere T., Nakariakov V.M. Excitation of decay-less transverse oscillations of coronal loops by random motions // A&A. V. 633. L8. 2020. https://doi.org/10.1051/0004-6361/201937187.
  4. Anfinogentov S., Nisticò G., Nakariakov V.M. Decay-less kink oscillations in coronal loops // A&A. V. 560. A107. 2013. https://doi.org/10.1051/0004-6361/201322094.
  5. Anfinogentov S.A., Nakariakov V.M., Nisticò G. Decayless low-amplitude kink oscillations: a common phenomenon in the solar corona? // A&A. V. 583. A136. 2015. https://doi.org/10.1051/0004-6361/201526195.
  6. Anfinogentov S., Nakariakov V.M. Motion Magnification in Coronal Seismology // Sol. Phys. V. 291. No. 11. P. 3251–3267. 2016. https://doi.org/10.1007/s11207-016-1013-z.
  7. Anfinogentov S., Nakariakov V., Kosak K. DTCWT based motion magnification v0.5.0 // Zenodo. 2019.
  8. Aschwanden M.J. Global Energetics of Solar Flares. XI. Flare Magnitude Predictions of the GOES Class // ApJ. V. 897. No. 1. P. 16. 2020. https://doi.org/10.3847/1538-4357/ab9630.
  9. Benz A.O. Flare Observations // Living Reviews in Solar Physics. V. 14. No. 1. P. 2. 2017. https://doi.org/10.1007/s41116-016-0004-3.
  10. Bobra M.G., Couvidat S. Solar Flare Prediction Using SDO/HMI Vector Magnetic Field Data with a Machine-learning Algorithm // ApJ. V. 798. No. 2. P. 135. 2015. https://doi.org/10.1088/0004-637X/798/2/135.
  11. Chifor C., Tripathi D., Mason H.E., Dennis B.R. X-ray precursors to flares and filament eruptions // Astron. & Astrophys. V. 472. P. 967–979. 2007. https://doi.org/10.1051/0004-6361:20077771.
  12. Goddard C.R., Nisticò G., Nakariakov V.M. et al. A statistical study of decaying kink oscillations detected using SDO/AIA // A&A. V. 585. A137. 2016. https://doi.org/10.1051/0004-6361/201527341.
  13. Gopalswamy N., Michalek G., Yashiro S. et al. The SOHO LASCO CME Catalog – Version 2 // arXiv e-prints. arXiv:2407.04165. 2024. https://doi.org/10.48550/arXiv.2407.04165.
  14. Karampelas K., Van Doorsselaere T. Generating Transverse Loop Oscillations through a Steady-flow Driver // ApJ. V. 897. No. 2. L35. 2020. https://doi.org/10.3847/2041-8213/ab9f38.
  15. Kobrin M.M., Korshunov A.I., Snegirev S.D., Timofeev B.V. On a sharp increase of quasi-periodic components of fluctuations of inclination of the spectrum of solar radio emission at lambda = 3 cm before active events in August 1972 // Soln. Dannye. V. 10. P. 79–85. 1973.
  16. Lemen J.R., Title A.M., Akin D.J. et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) // Sol. Phys. V. 275. No. 1–2. P. 17–40. 2012. https://doi.org/10.1007/s11207-011-9776-8.
  17. Martin S.F. Preflare conditions, changes and events // Sol. Phys. V. 68. No. 2. P. 217–236. 1980. https://doi.org/10.1007/BF00156861.
  18. Nakariakov V.M., Ofman L., Deluca E.E. et al. TRACE observation of damped coronal loop oscillations: Implications for coronal heating // Science. V. 285. P. 862–864. 1999. https://doi.org/10.1126/science.285.5429.862.
  19. Nakariakov V.M., Anfinogentov S.A., Nisticò G. et al. Undamped transverse oscillations of coronal loops as a self-oscillatory process // A&A. V. 591. L5. 2016. https://doi.org/10.1051/0004-6361/201628850.
  20. Nakariakov V.M., Anfinogentov S.A., Antolin P. et al. Kink Oscillations of Coronal Loops // Space Sci. Rev. V. 217. No. 73. 2021. https://doi.org/10.1007/s11214-021-00847-2.
  21. Nechaeva A., Zimovets I.V., Nakariakov V.M. et al. Catalog of Decaying Kink Oscillations of Coronal Loops in the 24th Solar Cycle // ApJS. V. 241. No. 2. P. 31. 2019. https://doi.org/10.3847/1538-4365/ab0e86.
  22. Nisticò G., Nakariakov V.M., Verwichte E. Decaying and decayless transverse oscillations of a coronal loop // A&A. V. 552. A57. 2013. https://doi.org/10.1051/0004-6361/201220676.
  23. Priest E.R., Forbes T.G. The magnetic nature of solar flares // Astronomy and Astrophysics Review. V. 10. No. 4. P. 313–377. 2002. https://doi.org/10.1007/s001590100013.
  24. Roberts B., Edwin P.M., Benz A.O. On coronal oscillations // ApJ. V. 279. P. 857–865. 1984. https://doi.org/10.1086/161956.
  25. Robbrecht E., Berghmans D. Automated recognition of coronal mass ejections (CMEs) in near-real-time data // A&A. V. 425. P. 1097–1106. 2004. https://doi.org/10.1051/0004-6361:20041302.
  26. Shrivastav A.K., Pant V., Berghmans D. et al. Statistical investigation of decayless oscillations in small-scale coronal loops observed by Solar Orbiter/EUI // A&A. V. 685. A36. 2024. https://doi.org/10.1051/0004-6361/202346670.
  27. Shrivastav A.K., Pant V., Berghmans D. et al. On the Existence of Long-period Decayless Oscillations in Short Active Region Loops // ApJ. V. 979. No. 1. A6. 2025. https://doi.org/10.3847/1538-4357/ad95fb.
  28. Toriumi S., Wang H. Flare-productive active regions // Living Rev Sol. Phys. V. 16. No. 3. 2019. https://doi.org/10.1007/s41116-019-0019-7.
  29. Wang H., Liu C., Ahn K. et al. High-resolution observations of flare precursors in the low solar atmosphere // Nature Astronomy. V. 1. P. 0085. 2017. https://doi.org/10.1038/s41550-017-0085.
  30. Wang T., Ofman L., Davila J.M. et al. Growing Transverse Oscillations of a Multistranded Loop Observed by SDO/AIA // ApJ. V. 751. No. 2. L27. 2012. https://doi.org/10.1088/2041-8205/751/2/L27.
  31. White R.S., Verwichte E. Transverse coronal loop oscillations seen in unprecedented detail by AIA/SDO // A&A. V. 537. A49. 2012. https://doi.org/10.1051/0004-6361/20118093.
  32. Zajtsev V.V., Stepanov A.V. On the origin of pulsations of type IV solar radio emission. Plasma cylinder oscillations (I) // Issledovaniia Geomagnetizmu Aeronomii i Fizike Solutsa. V. 37. P. 3–10. 1975.
  33. Zimovets I.V., Sharykin I.N. Models for Short-Term Forecast of Maximum X-ray Class of Solar Flares Based on Magnetic Energy of Active Regions // Geomagnetism and Aeronomy. V. 64. No. 5. P. 603–61. 2024. https://doi.org/10.1134/S0016793224600541.
  34. https://cdaw.gsfc.nasa.gov/CME_list/
  35. www.pygtgraph.org

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).