Analysis of The Efficiency of Several Short-Term Solar Flare Forecasting Techniques Based on Observations of Different Solar Atmospheric Layers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The operational solar flare forecast is an important task in solar physics. It is known to be inherently difficult, and its accuracy remains limited. The forecast quality metrics reported vary significantly, in particular, in recent studies that employ modern machine learning techniques. These studies often report high performance scores; however, they generally lack validation under real-time forecasting conditions, making it difficult to assess their actual effectiveness. Our study presents a comparative analysis of the real-world performance forecasts of solar flares of class ≥C and ≥M that occurred in the period from 2009 to 2024. We compare the forecasts published by the Space Weather Prediction Center on SolarMonitor with the empirical forecasting criteria based on solar radio observations developed by the Northwest Branch of the Special Astrophysical Observatory (SAO) of the Russian Academy of Sciences.

About the authors

I. S. Knyazeva

Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo

Email: iknyazeva@gmail.com
St. Petersburg, Russia

I. I. Lysov

Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo

St. Petersburg, Russia

E. A. Kurochkin

Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo

St. Petersburg, Russia

M. S. Korelov

Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo

St. Petersburg, Russia

N. G. Makarenko

Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo

St. Petersburg, Russia

References

  1. Abed A.K., Qahwaji R., Abed A. The automated prediction of solar flares from SDO images using deep learning // Advances in Space Research. V. 67. No. 8. P. 2544–2557. https://doi.org/10.1016/j.asr.2021.01.042.2021.
  2. Abduallah Y., Wang J.T.L., Wang H., Xu Y. Operational prediction of solar flares using a transformer-based framework // Sci. Rep. V. 13. P. 13665. 2023.
  3. Abramenko V.I., Yurchyshyn V.B., Wang H., et al. Signature of an Avalanche in Solar Flares as Measured by Photospheric Magnetic Fields // The Astrophysical Journal. V. 597. No. 2. P. 1135. https://doi.org/10.1086/378492.2003.
  4. Bloomfield D.S., Higgins P.A., McAteer R.T.J., Gallagher P.T. Toward reliable benchmarking of solar flare forecasting methods // The Astrophysical Journal Letters. V. 747. No. 2. P. L41. https://doi.org/10.1088/2041-8205/747/2/L41.2012.
  5. Bogod V.M., Svidskiy P.M., Kurochkin, et al. A Method of Forecasting Solar Activity Based on Radio Astronomical Observations // Astrophysical Bulletin. V. 73. No. 4. P. 478–486. https://doi.org/10.1134/S1990341318040119.2018.
  6. Crown M.D. Validation of the NOAA Space Weather Prediction Center’s solar flare forecasting look-up table and forecaster-issued probabilities // Space Weather. V. 10. No. 6. LS06006. 2012. https://doi.org/10.1029/2011SW000760.
  7. Gallagher P.T., Moon Y.-J., Wang H. Active-Region Monitoring and Flare Forecasting – I. Data Processing and First Results // Solar Physics. V. 209. No. 1. P. 171–183. 2002. https://doi.org/10.1023/A:1020950221179.
  8. Ishkov V.N. Predicting Solar Flare Phenomena: Solar Proton Events // Bulletin of the Russian Academy of Sciences: Physics. V. 87. No. 7. P. 942–944. 2023. https://doi.org/10.3103/S1062873823702763.
  9. Knyazeva I., Lysov I., Kurochkin E., et al. A robust preprocessing pipeline for RATAN-600 solar radio observations data // Astronomy and Computing. V. 51. 100918. 2025. https://doi.org/10.1016/j.ascom.2024.100918.
  10. Leka K.D., Park S.H., Kusano K., et al. A Comparison of Flare Forecasting Methods. III. Systematic Behaviors of Operational Solar Flare Forecasting Systems // The Astrophysical Journal. V. 881. No. 2. P. 101–114. 2019. https://doi.org/10.3847/1538-4357/ab2e11.
  11. Liu S., Xu L., Zhao Z., et al. Deep Learning Based Solar Flare Forecasting Model. II. Influence of Image Resolution // The Astrophysical Journal. V. 941. No. 1. P. 20. 2022. https://doi.org/10.3847/1538-4357/ac99dc.
  12. Nishizuka N., Kubo Y., Sugiura K., et al. Operational solar flare prediction model using Deep Flare Net // Earth, Planets and Space. V. 73. No. 1. P. 64. 2021. https://doi.org/10.1186/s40623-021-01381-9.
  13. Park S., Leka K., Kusano K., et al. A Comparison of Flare Forecasting Methods. IV. Evaluating Consecutive-Day Forecasting Patterns // The Astrophysical Journal. 2020. V. 890. No. 124. P. 124. 2020. https://doi.org/10.3847/1538-4357/ab65f0.
  14. Peterova N.G., Topchilo N.A., Kurochkin E.A. Increased Microwave Radiation Brightness as a Sign of Flare-Producing Active Regions Based on Observations of NOAA Active Region 12371 // Geomagnetism and Aeronomy. V. 61. No. 1. P. S24–S35. 2021. https://doi.org/10.1134/S001679322020110145.
  15. Popowicz A. Toward Reliable Solar Flare Forecasting: Exploring Multi-Wavelength Data from the Solar Dynamics Observatory // Preprints. 2025010895. 2025. https://doi.org/10.20944/preprints202501.0895.v1.
  16. Sinha S., Gupta O., Singh V., et al. A Comparative Analysis of Machine-learning Models for Solar Flare Forecasting: Identifying High-performing Active Region Flare Indicators // The Astrophysical Journal. V. 935. No. 1. P. 45. 2022. https://doi.org/10.3847/1538-4357/ac7955.
  17. Song H., Tan C., Jing J., et al. Statistical Assessment of Photospheric Magnetic Features in Imminent Solar Flare Predictions // Solar Physics. V. 254. No. 1. P. 101–125. 2009. https://doi.org/10.1007/s11207-008-9288-3.
  18. Tanaka H., Enome S. The microwave structure of coronal condensations and its relation to proton flares // Solar Physics. V. 40. No. 1. P. 123–131. 1975. https://doi.org/10.1007/BF00183156.
  19. Tang R., Liao W., Chen Z., et al. Solar Flare Prediction Based on the Fusion of Multiple Deep-learning Models // The Astrophysical Journal Supplement Series. V. 257. No. 2. P. 50. 2021. https://doi.org/10.3847/1538-4365/ac249e.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).