Theoretical and Experimental Study of the Kinetics of Triplet States of Molecular Nitrogen in Sprites and Their Analogues

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Populations of different vibrational levels of triplet states of molecular nitrogen and the emission intensities of the bands of the first and second positive systems of N2 at altitudes of 40–90 km during sprites were calculated. The calculation results show that the ratio of the calculated spectral densities of the emission energy of the bands of the first positive system to the spectral densities of the emission energy of the second positive system with decreasing altitude. This is explained by increase in the rate of quenching of the B3Π state with increasing atmospheric density. The calculation results are compared with the experimentally measured spectral densities of the emission energy of N2 bands in the emission spectra of diffuse plasma jets.

About the authors

A. S. Kirillov

Polar Geophysical Institute

Email: kirillov@pgia.ru
Apatity, Russia

V. F. Tarasenko

Polar Geophysical Institute; Institute of High-Current Electronics SB RAS

Apatity, Russia; Tomsk, Russia

N. P. Vinogradov

Polar Geophysical Institute; Institute of High-Current Electronics SB RAS

Apatity, Russia; Tomsk, Russia

V. A. Kirillov

Polar Geophysical Institute

Apatity, Russia

References

  1. Дружин Г.И., Малкин Е.И., Капустина О.В. Атмосферники, связанные со спрайтами, по КНЧ/ОНЧ-наблюдениям на п-ове Камчатка // Геомагнетизм и аэрономия. Т. 63. № 5. С. 657–666. 2023. https://doi.org/10.31857/S001679402260051X
  2. Кириллов А.С., Белаховский В.Б. Свечение полос молекулярного азота в атмосфере Земли во время высыпания высокоэнергичных электронов // Геомагнетизм и аэрономия. Т. 60. № 1. С. 93–98. 2020. https://doi.org/10.31857/S0016794020010071
  3. Тарасенко В.Ф., Бакшт Е.Х., Виноградов Н.П., Сорокин Д.А. Спектры излучения воздуха низкого давления при диффузном стримерном разряде // Оптика и спектроскопия. Т. 130. № 12. С. 1769–1777. 2022. https://doi.org/10.21883/OS.2022.12.54080.4014-22
  4. Adachi T., Fukunishi H., Takahashi Y., Hiraki Y., Hsu R.-R., Su H.-T., Chen A.B., Mende S.B., Frey H.U., Lee L.C. Electric field transition between the diffuse and streamer regions of sprites estimated from ISUAL/array photometer measurements // Geophys. Res. Lett. V. 33. № 17. ID L17803. 2006. https://doi.org/10.1029/2006GL026495
  5. Ebert U., Nijdam S., Li C., Luque A., Briels T., van Veldhuizen E. Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning // J. Geophys. Res. – Space. V. 115. № 7. ID A00E43. 2010. https://doi.org/10.1029/2009JA014867
  6. Franz R.C., Nemzek R.J., Winckler J.R. Television image of a large upward electrical discharge above a thunderstorm system // Science. V. 249. № 4964. P. 48–51. 1990. https://doi.org/10.1126/science.249.4964.48
  7. Garipov G.K., Khrenov B.A., Klimov P.A., Klimenko V.V., Mareev E.A., Martines O., Mendoza E., Morozenko V.S., Panasyuk M.I., Park I.H., Ponce E., Salazar H., Tulupov V.I., Vedenkin N.N., Yashin I.V. Global transients in ultraviolet and red-infrared ranges from data of the “Universitetsky-Tatiana-2” satellite // J. Geophys. Res. – Atmos. V. 118. № 2. P. 370–379. 2013. https://doi.org/10.1029/2012JD017501
  8. Gilmore F.R., Lader R.R., Espy P.J. Franck-Condon factors, r-centroids, electronic transition moments, and Einstein coefficients for many nitrogen and oxygen band systems // J. Phys. Chem. Ref. Data. V. 21. № 5. P. 1005–1107. 1992. https://doi.org/10.1063/1.555910
  9. Gordillo-Vazquez F.J. Air plasma kinetics under the influence of sprites // J. Phys. D Appl. Phys. V. 41. № 23. ID 234016. 2008. https://doi.org/10.1088/0022-3727/41/23/234016
  10. Gordillo-Vazquez F.J., Perez-Invernon F.J. A review of the impact of transient luminous events on the atmospheric chemistry: past, present, and future // Atmos. Res. V. 252. ID 105432. 2021. https://doi.org/10.1016/j.atmosres.2020.105432
  11. Goto Y., Ohba Y., Narita K. Optical and spectral characteristics of low pressure air discharges as sprite models // Journal of Atmospheric Electricity. V. 27. No 2. P.105–112. 2007. https://doi.org/10.1541/jae.27.105
  12. Green B.D., Fraser M.E., Rawlins W.T., Jeong L., Blumberg W.A.M., Mende S.B., Swenson G.R., Hampton D.L., Wescott E.M., Sentman D.D. Molecular excitation in sprites // Geophys. Res. Lett. V. 23. No 16. P. 2161–2164. 1996. https://doi.org/10.1029/96GL02071
  13. Heavner M.J., Morrill J.S., Siefring C., Sentman D.D., Moudry D.R., Wescott E.M., Bucsela E.J. Near-ultraviolet and blue spectral observations of sprites in the 320–460 nm region: N2 (2PG) emissions // J. Geophys. Res. – Space. V. 115. No 7. ID A00E44. 2010. https://doi.org/10.1029/2009JA014858
  14. Hoder T., Bonaventura Z., Bourdon A., Simek M. Sub-nanosecond delays of light emitted by streamer in atmospheric pressure air: Analysis of N2(C3Πu) and N2+(B2Σu+) emissions and fundamental streamer structure // J. Appl. Phys. V. 117. No 7. ID 073302. 2015. https://doi.org/10.1063/1.4913215
  15. Itikawa Y. Cross sections for electron collisions with nitrogen molecules // J. Phys. Chem. Ref. Data. V. 35. No 1. P. 31–53. 2006. https://doi.org/10.1063/1.1937426
  16. Jehl A., Farges T., Blanc E. Color pictures of sprites from nondedicated observation on board the International Space Station // J. Geophys. Res. – Space. V. 118. No 1. P. 454–461. 2013. https://doi.org/10.1029/2012JA018144
  17. Kannae T., Stenbaek-Nielsen H.C., McHarg M.G. Altitude resolved sprite spectra with 3 ms temporal resolution // Geophys. Res. Lett. V. 34. No 7. ID L07810. 2007. https://doi.org/10.1029/2006GL028608
  18. Kirillov A.S. Intermolecular electron energy transfer processes in the quenching of N2(C3Πu,v=0–4) by collisions with N2 molecules // Chem. Phys. Lett. V. 715. P. 263–267. 2019. https://doi.org/10.1016/j.cplett.2018.11.048
  19. Kirillov A.S., Belakhovsky V.B. The kinetics of N2 triplet electronic states in the upper and middle atmosphere during relativistic electron precipitations // Geophys. Res. Lett. V. 46. No 13. P. 7734–7743. 2019. https://doi.org/10.1029/2019GL083135
  20. Kirillov A.S., Belakhovsky V.B. The kinetics of O2 singlet electronic states in the upper and middle atmosphere during energetic electron precipitation // J. Geophys. Res. – Atmos. V. 126. No 5. ID e2020JD033177. 2021. https://doi.org/10.1029/2020JD033177
  21. Korotkov S.V., Aristov Y.V., Kozlov A.K., Korotkov D.A., Lyubinsky A.G., Spichkin G.L. Installation for air cleaning from organic impurities by plasma formed by barrier discharge of nanosecond duration // Instrum. Exp. Tech. V. 55. No 5. P. 605–607. 2012. https://doi.org/10.1134/S0020441212050041
  22. Kuo C.-L., Hsu R.R., Chen A.B., Su H.T., Lee L.C., Mende S.B., Frey H.U., Fukunishi H., Takahashi Y. Electric fields and electron energies inferred from the ISUAL recorded sprites // Geophys. Res. Lett. V. 32. No 5. ID L19103. 2005. https://doi.org/10.1029/2005GL023389
  23. Malagon-Romero A., Teunissen J., Stenbaek-Nielsen H.C., McHarg M.G., Ebert U., Luque A. On the emergence mechanism of carrot sprites // Geophys. Res. Lett. V. 47. No 1. ID e2019GL085776. 2020. https://doi.org/10.1029/2019GL085776
  24. Marskar R. Genesis of column sprites: formation mechanisms and optical structures // Plasma Sources Sci. T. V. 33. No 2. ID 025024. 2024. https://doi.org/10.1088/1361-6595/ad29c0
  25. Morrill J., Bucsela E., Siefring C., Heavner M., Berg S., Moudry D., Slinker S., Fernsler R., Wescott E., Sentman D., Osborne D. Electron energy and electric field estimates in sprites derived from ionized and neutral N2 emissions // Geophys. Res. Lett. V. 29. No 10. ID 1462. 2002. https://doi.org/10.1029/2001GL014018
  26. Neubert T., Østgaard N., Reglero V., Chanrion O., Oxborrow C.A., Orr A., Tacconi M., Hartnack O., Bhander D.D. The ASIM mission on the International Space Station // Space Sci. Rev. V. 215. No 2. ID 26. 2019. https://doi.org/10.1007/s11214-019-0592-z
  27. Opaits D.F., Shneider M.N., Howard P.J., Miles R.B., Milikh G.M. Study of streamers in gradient density air: Table top modelling properties // Geophys. Res. Lett. V. 37. No 14. ID L14801. 2010. https://doi.org/10.1029/2010GL043996
  28. Pancheshnyi S.V., Starikovskaia S.M., Starikovskii A.Yu. Collisional deactivation of N2(C3Πu,v=0,1,2,3) states by N2, O2, H2 and H2O molecules // Chem. Phys. V. 262. No 2–3. P. 349–357. 2000. https://doi.org/10.1016/S0301-0104(00)00338-4
  29. Pasko V.P. Recent advances in theory of transient luminous events // J. Geophys. Res. – Space. V. 115. No 6. ID A00E35. 2010. https://doi.org/10.1029/2009JA014860
  30. Piper L.G. State-to-state N2(A3Σu+) energy pooling reactions. I. The formation of N2(C3Πu) and the Herman infrared system // J. Chem. Phys. V. 88. No 1. P. 231–239. 1988. https://doi.org/10.1063/1.454649
  31. Reising S.C., Inan U.S., Bell T.F., Lyons W.A. Evidence for continuing current in sprite-producing cloud-to-ground lightning // Geophys. Res. Lett. V. 23. No 24. P. 3639–3642. 1996. https://doi.org/10.1029/96GL03480
  32. Sentman D.D., Wescott E.M., Osborne D.L., Hampton D.L., Heavner M.J. Preliminary results from the Sprites94 aircraft campaign: I. Red sprites // Geophys. Res. Lett. V. 22. No 10. P. 1205–1208. 1995. https://doi.org/10.1029/95GL00583
  33. Simek M. Optical diagnostics of streamer discharges in atmospheric gases // J. Phys. D Appl. Phys. V. 47. No 46. ID 463001. 2014. https://doi.org/10.1088/0022-3727/47/46/463001
  34. Sorokin D., Tarasenko V., Bakshi E.Kh., Vinogradov N.P. Ionization waves, propagating in opposite directions, as in red sprites // European Journal of Environment and Earth Sciences. V. 3. No 6. P. 42–48. 2022. https://doi.org/10.24018/eigeo.2022.3.6.322
  35. Stenbaek-Nielsen H.C., Haaland R., McHarg M.G., Hensley B.A., Kanmae T. Sprite initiation altitude measured by triangulation // J. Geophys. Res. – Space. V. 115. No 3. ID A00E12. 2010. https://doi.org/10.1029/2009JA014543
  36. Surkov V.V., Hayakawa M. Progress in the study of transient luminous and atmospheric events: a review // Surv. Geophys. V. 41. № 5. P. 1101–1142. 2020. https://doi.org/10.1007/s10712-020-09597-2
  37. Tarasenko V., Vinogradov N., Baksht E., Sorokin D. Experimental simulation of red sprites in a laboratory // Journal of Atmospheric Science Research. V. 5. № 3. P. 26–36. 2022. https://doi.org/10.30564/jasr.v5i3.4858
  38. Tarasenko V.F., Vinogradov N.P., Panarin V.A., Skakun V.S., Sorokin D.A., Baksht E.Kh. Experimental simulation of non-uniformity in columnar sprite glow // Atmospheric and Oceanic Optics. V. 37. Suppl. 1. P. S183–S191. 2024. https://doi.org/10.1134/S1024856024701598
  39. Williams E., Valente M., Gerken E., Golka R. Calibrated radiance measurements with an air-filled glow discharge tube: Application to sprites in the mesosphere // Sprites, elves and intense lightning discharges. Eds. M. Füllekrug, E.A. Mareev, M.J. Rycroft. Dordrecht: Springer. P. 237–251. 2006. https://doi.org/10.1007/1-4020-4629-4_11

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).