Internal Gravity Waves in the Moving Ionosphere

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of wind in the ionosphere on the characteristics of internal gravity waves is considered. It is shown that the ionospheric wind interacts with the geomagnetic field leading to the appearance of the Ampere force, the vertical gradient of which modifies the properties of the waves. Equations of internal gravity waves in a moving ionosphere are derived and their dispersion characteristics are analyzed. Generation of waves by linear and point sources and their propagation in the moving ionosphere are considered. The transformation coefficients of atmospheric internal gravity waves and their reflection from the boundary of the moving ionosphere are found. It is shown that the ionospheric wind leads to an exponential increase in the wave amplitudes in the direction predominantly normal to the wind direction. The characteristics of internal gravity waves are analyzed depending on the ionosphere and wind parameters. The results of the theoretical study are applied to interpret the observed properties of medium-scale moving ionospheric disturbances.

About the authors

V. M. Sorokin

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation RAS (IZMIRAN)

Email: sova@izmiran.ru
Moscow, Troitsk, Russia

A. K. Yaschenko

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation RAS (IZMIRAN)

Moscow, Troitsk, Russia

References

  1. Гершман Б. Н. Динамика ионосферной плазмы. М.: Наука. 255 с. 1974.
  2. Госсард Э., Хук У. Волны в атмосфере. М.: Мир. 532 с. 1978.
  3. Сомсиков В. М. Солнечный терминатор и динамика атмосферы. Алма-Ата.: Наука. 192 с. 1983.
  4. Сорокин В. М., Федорович Г. В. Физика медленных МГД волн в ионосферной плазме. М.: Энергоиздат. 137 с. 1982.
  5. Сорокин В. М. Влияние ветра в ионосфере на формирование аномалий ОНЧ/НЧ-радиосигналов, связанных с подготовкой землетрясений // Геомагнетизм и аэрономия. Т. 64. № 5. С. 678–687. 2024. https://doi.org/10.31857/S0016794024050087
  6. Уэбб В. Структура стратосферы и мезосферы. М.: Мир. 260 с. 1969.
  7. Charney J. G., Drazin P.G. Propagation of planetary-scale disturbances from the lower into the upper atmosphere // J. Geophys. Res. V. 66. № 1. Р. 83–109. 1961. https://doi.org/10.1029/JZ066i001p00083
  8. Cheremnykh O., Fedorenko A., Voitsekhovska A., Selivanov Y., Ballai I., Verth G., Fedun V Atmospheric waves disturbances from the solar terminator according to the VLF radio stations data // Adv. Space Res. V. 72. № 11. Р. 4825–4835. 2023. https://doi.org/10.1016/j.asr.2023.08.036
  9. Cowling D. H., Webb H. S., Yeh K.C. Group rays of internal gravity waves in a wind-stratified atmosphere // J. Geophys. Res. V. 76. № 1. Р. 213–220. 1971. https://doi.org/10.1029/JA076i001p00213
  10. Ding F., Wan W., Xu G., Yu T., Yang G., Wang J. Climatology of medium-scale traveling ionospheric disturbances observed by GPS network in central China // J. Geophys. Res. – Space. V. 116. № 9. ID A09327. 2011. https://doi.org/10.1029/2011JA016545
  11. Essien P., Figueiredo C.A.O.B., Takahashi H., Wrasse C.M., Barros D., Klutse N.A.B., Lomotey S.O., Gobbi D., Ayorinde T.T., Bilibio A.V. Long-term study on medium-scale traveling ionospheric disturbances observed over the south American equatorial region // Atmosphere. V. 12. № 11. ID 1409. 2021. https://doi.org/10.3390/atmos12111409
  12. Francis S.H. Global propagation of atmospheric gravity waves: A review // J. Atmos. Terr. Phys. V. 37. № 6–7. Р. 1011–1054. 1975. https://doi.org/10.1016/0021-9169(75)90012-4
  13. Geisler J.E. Atmospheric winds in the middle latitude F-region // J. Atmos. Terr. Phys. V. 28. № 8. Р. 703–720. 1966. https://doi.org/10.1016/0021-9169(66)90020-1
  14. He L.-S., Dyson P.L., Parkinson M.L., Wan W. Studies of medium scale travelling ionospheric disturbances using TIGER SuperDARN radar sea echo observations // Ann. Geophys. V. 22. № 12. Р. 4077–4088. 2004. https://doi.org/10.5194/angeo-22-4077-2004
  15. Hernández-Pajares M., Juan J.M., Sanz J., Aragón-Angel A. Propagation of medium scale traveling ionospheric disturbances at different latitudes and solar cycle conditions // Radio Sci. V. 47. № 6. ID R50K05. 2012. https://doi.org/10.1029/2011RS004951
  16. Hines C.O. Internal atmospheric gravity waves at ionospheric heights // Can. J. Phys. V. 38. № 11. Р. 1441–1481. 1960. https://doi.org/10.1029/GM018p0248
  17. Hines C.O., Reddy C.A. On the propagation of atmospheric gravity waves through regions of wind shear // J. Geophys. Res. V. 72. № 3. Р. 1015–1034. 1967. https://doi.org/10.1029/JZ072i003p01015
  18. Lee W.K., Kil H., Paxton L.J. Global distribution of nighttime MSTIDs and its association with E region irregularities seen by CHAMP satellite // J. Geophys. Res. – Space. V. 126. № 5. ID e2020JA028836. 2021. https://doi.org/10.1029/2020JA028836
  19. Munro G.H. Travelling ionospheric disturbances in the F region // Aust. J. Phys. V. 11. № 1. Р. 91–112. 1958. https://doi.org/10.1071/PH580091
  20. Perwitasari S., Nakamura T., Tsugawa T. et al. Propagation direction analyses of medium-scale traveling ionospheric disturbances observed over North America with GPS-TEC perturbation maps by three-dimensional spectral analysis method // J. Geophys. Res. – Space. V. 127. № 1. ID e2020JA028791. 2022. https://doi.org/10.1029/2020JA028791
  21. Pimenta A.A. Propagation of nighttime medium-scale traveling ionospheric disturbances (MSTIDs) during high and low solar-activity conditions // URSI Radio Science Letters. V. 2. 2020. https://doi.org/10.46620/20-0015
  22. Polianin A.D. Handbook of Linear Partial Differential Equations for Engineers and Scientists. Boca Raton, FL: Chapman & Hall/CRC. 781 p. 2002.
  23. Sorokin V.M., Pokhotelov O.A. The effect of wind on the gravity wave propagation in the Earth’s ionosphere // J. Atmos. Sol.-Terr. Phy. V. 72. № 2–3. Р. 213–218. 2010. https://doi.org/10.1016/j.jastp.2009.11.012
  24. Voisin B. Internal wave generation in uniformly stratified fluids. Part 1. Green’s function and point sources // J. Fluid Mech. V. 231. Р. 439–480. 1991. https://doi.org/10.1017/S0022112091003464

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).