Space-Time Dynamics of the Earth’s Outer Radiation Belt and Wave Activity in May and December 2006

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper examines the relationship between space-time variations in electron fluxes in the Earth’s outer radiation belt (OERB) and the wave activity — Pc5 pulsations (2–7 MHz) observed during magnetic storms of different origin. Two magnetic storms of 2006 were considered: the storm of May 9–14 caused by the high-speed solar wind stream from a coronal hole that arrived to the Earth, and the storm of December 15–16 caused by a coronal mass ejection. The analysis of the OERB electron fluxes in a broad energy range (from 300 keV to >3.5 MeV) was based on measurements on board the Universitetsky-Tatiana satellite with a circular polar orbit. It was shown that the wave activity during the storm of December 15–16 was significantly higher than during the storm of May 9–14. During the main phase of the storm on December 15–16, the maximum wave activity shifted to lower latitudes compared to its pre-storm position. The outer Earth’s radiation belt also shifted after the December storm closer to the Earth – towards lower L. The maximum particle flux increased after the December storm by approximately an order of magnitude in the entire energy range. After the May storm, the maximum electron fluxes in the OERB decreased, and the position of the maximum changed little, shifting slightly toward high latitudes, which is also consistent with the spatial distribution of the wave activity of Pc5 pulsations at that time.

About the authors

I. N. Myagkova

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Email: irina@srd.sinp.msu.ru
Moscow, Russia

O. V. Kozyreva

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Moscow, Russia

References

  1. Вернов С.Н., Григоров Н.Л., Логачев Ю.И., Чудаков А.Е. Измерения космического излучения на искусственном спутнике Земли // Доклады Академии наук. Т. 120. № 6. С. 1231–1233. 1958.
  2. Денисов Ю.И., Калега В.В., Мягкова И.Н., Панасюк М.И. Эксперимент по измерению потоков заряженных частиц прибором ЭЛЕКТРОН-М-ПЕСКА на борту солнечной обсерватории КОРОНАС-ФОТОН // Астрономический вестник. Исследования солнечной системы. Т. 45. № 3. С. 213–218. 2011.
  3. Клейменова Н.Г., Козырева О.В. Планетарное распределение геомагнитных пульсаций во время магнитной бури в минимуме солнечной активности // Физика Земли. № 1. С. 104–113. 2014. https://doi.org/10.7868/s0002333713060069
  4. Кузнецов С.Н., Мягкова И.Н., Юшков Б.Ю. и др. Динамика радиационных поясов Земли во время сильных магнитных бурь по данным ИСЗ “КОРОНАС-Ф” // Астрономический вестник. Исследования солнечной системы. Т. 41. № 4. С. 350–359. 2007.
  5. Новиков Л.С., Воронина Е.Н. Взаимодействие космических аппаратов с окружающей средой. М.: КДУ, 2021.
  6. Оседло В.И., Калегаев В.В., Рубинштейн И.А. и др. Мониторинг радиационного состояния околоземного пространства на спутнике АРКТИКА-М №1 // Космические исследования. Т. 60. № 6. С. 439–453. 2022. https://doi.org/10.31857/S0023420622060085
  7. Пилипенко В.А., Белаховский В.Б., Самсонов С.Н О возможных механизмах ускорения электронов до релятивистских энергий в магнитосфере Земли. Труды Кольского научного центра РАН. Т. 8. С. 24–30. 2017.
  8. Потапов А.С., Цэгмэд Б., Рыжакова Л.В. Связь потоков релятивистских электронов на геостационарной орбите с уровнем УНЧ-активности на поверхности Земли и в солнечном ветре в 23-м цикле солнечной активности. Космические исследования. Т. 50. С. 130–146. 2012.
  9. Садовничий В.А., Панасюк М.И., Бобровников С.Ю. и др. Первые результаты исследований космической среды на спутнике Университетский – Татьяна // Космические исследования. Т. 45. № 4. С. 291–305. 2007.
  10. Садовничий В.А., Панасюк М.И., Яшин И.В. и др. Исследования космической среды на микроспутниках Университетский-Татьяна и Университетский-Татьяна-2 // Астрономический вестник. Исследования солнечной системы. Т. 45. № 1. С. 5–31. 2011.
  11. Тверской Б.А. Устойчивость радиационных поясов Земли // Геомагнетизм и аэрономия. Т. 7. № 2. С. 226–242. 1967.
  12. Baker D.N., Hoxie V., Zhao H., Allison N., Jaynes A.N., Kanekal S., Xinlin LI Elkingtonet S. Multiyear measurements of radiation belt electrons: acceleration, transport, and loss // J. Geophys. Res. – Space. V. 124. № 4. P. 2588–2602. 2019. https://doi.org/10.1029/2018JA026259
  13. Brizard A.J., Chan A.A. Relativistic bounce-averaged quasilinear diffusion equation for low-frequency electromagnetic fluctuations. Physics of Plasmas. Vol. 8. P. 4762–4771. 2001. https://doi.org/10.1063/1.1408623
  14. Boscher D., Bourdarie S., Thorne R., Abel B. Influence of the wave characteristics in the electron radiation belt distribution // Adv. Space Res. V. 26. P. 163–166. 2000. https://doi.org/10.1016/S0273-1177(99)01043-1
  15. Brito T., Woodger L., Hudson M. et al. Energetic radiation belt electron precipitation showing ULF modulation. Geophys. Res. Lett. V. 39. № 22. ID L22104. 2012. https://doi.org/10.1029/2012GL053790
  16. Chu X., Ma D., Borink J. et al. Relativistic electron model in the outer radiation belt using a neural network approach // Space Weather. V. 19. № 12. ID e2021SW002808. 2021. https://doi.org/10.1029/2021SW002808
  17. Cole D.G. Space weather: Its effects and predictability // Space Sci. Rev. V. 107. P. 295–302. 2003. https://doi.org/10.1023/A:1025500513499
  18. Dungey J.W. Effects of electromagnetic perturbations on particles trapped in the radiation belts. Space Sci. Rev. V. 4. P. 199–222. 1964. https://doi.org/10.1007/BF00173882
  19. Da Silva L.A., Shi J., Alves L.R., et al. High-energy electron flux enhancement pattern in the outer radiation belt in response to the Alfvénic fluctuations within high-speed solar wind stream: A statistical analysis // J. Geophys. Res. – Space. V. 126. ID e2021JA029363. 2021. https://doi.org/10.1029/2021JA029363
  20. Degtyarev V.I., Kharchenko I.P., Potapov A.S.,Tsegmed B., Chudnenko S.E. Qualitative estimation of magnetic storm efficiency in producing relativistic electron flux in the Earth’s outer radiation belt using geomagnetic pulsations data// Adv. Space Res. V. 43. P. 829–836. 2009. https://doi.org/10.1016/j.asr.2008.07.004
  21. Elkington S.R., Hudson M.K., Chan A.A. Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mode Pc-5 ULF oscillations // Geophys. Res. Lett. V. 26. № 21. Р. 3273–3276. 1999.
  22. Elkington S.R., Sarris T.E. The role of Pc5 ULF waves in the radiation belts: current understanding and open questions. Waves, particles, and storms in geospace. Eds. Balasis G., Daglis I.A., Mann I.R. Vol. 169. Oxford University Press, pp. 177. 2016. https://doi.org/10.1093/acprof:oso/9780198705246.003.0005
  23. Friedel R.H., Reeves W.G.P., Obara T. Relativistic electron dynamics in the inner magnetosphere — A review // J. Atmos. Solar. Terr. Phys. V. 64. Р. 265–283. 2002. https://doi.org/10.1016/S1364-6826(01)00088-8
  24. Horne R., Thorne R., Shprits Y. et al. Wave acceleration of electrons in the Van Allen radiation belts // Nature. V. 437. Р. 227–230. 2005. https://doi.org/10.1038/nature03939
  25. Fäithammar C.-G. Effects of time-dependent electric fields on geomagnetically trapped radiation. J. Geophys. Res. V. 70. № 11. Р. 2503–2516. 1965. https://doi.org/10.1029/JZ070i011p02503
  26. Iucci N., Levitin A.E., Belov A.V. et al. Space weather conditions and spacecraft anomalies in different orbits // Space Weather. V. 3. № 1. ID S01001. 2005. https://doi.org/10.1029/2003SW000056
  27. Jaynes A.N., Baker D.N., Singer H.J. et al. Source and seed populations for relativistic electrons: Their roles in radiation belt changes // J. Geophys. Res. — Space. 2015. V. 120. Р. 7240–7254. 2015. https://doi.org/10.1002/2015JA021234
  28. Kataoka R., Miyoshi Y. Average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit // Ann. Geophys. V. 26. Р. 1335–1339. 2008. https://doi.org/10.5194/angeo-26-1335-2008
  29. Killey S., Rae I.J., Chakraborty S., Smith A.W., Bentley S.N., Bakrania M.R., Wainwright R., Watt C.E.J., Sandhu J.K. Using machine learning to diagnose relativistic electron distributions in the Van Allen radiation belts // RAS Techniques and Instruments, V. 2. № 1. Р. 548–561. 2023. https://doi.org/10.1093/rasti/rza6035
  30. Klimushkin D.Y., Mager P.N., Chelpanov M.A., Kostarev D.V. Interaction between long-period ULF waves and charged particle in the magnetosphere: theory and observations (overview) // Solnechno-Zemnaya Fizika. 2021. № 4. Р. 35–69. 2021. https://doi.org/10.12737/szf-74202105
  31. Kozyreva O., Pilipenko V., Engebretson M.J., Yumoto K., Watermann J., Romanova N. In search of a new ULF wave index: Comparison of Pc5 power with dynamics of geostationary relativistic electrons // Planetary and Space Science. V. 55. Р. 755–769. 2007. https://doi.org/10.1016/j.pss.2006.03.013
  32. Kudela K. Space weather near Earth and energetic particles: selected results // Journal of Physics: Conf. Series. V.409. № 1. ID 012017. 2013. https://doi.org/10.1088/1742-6596/409/1/012017
  33. Li X., Baker D.N., Temerin M., Cayton T.E., Reeves E.G.D., Christensen R.A., Blake J.B., Looper M.D., Nakamura R., Kanekal S.G. Multisatellite observations of the outer zone electron variation during the November 3–4, 1993, magnetic storm // J. Geophys. Res. V. 102. Р. 14123–14140. 1997. https://doi.org/10.1029/97JA01101
  34. Li X., Baker D.N., Kanekal S.G., Looper M., Temerin M. Long term measurements of radiation belts by SAMPEX and their variations // Geophys. Res. Letters. V. 28. № 20. Р. 3827–3830. 2001. https://doi.org/10.1029/2001gl013586
  35. Li X., Temerin M.A. The electron radiation belt // Space Sci. Rev. V. 95. Р. 569–580. 2001. https://doi.org/10.1023/A:1005221108016
  36. Li W., Hudson M.K. Earth’s Van Allen radiation belts: From discovery to the Van Allen Probes era // J. Geophys. Res. — Space. V. 124. Р. 8319–8351. 2019. https://doi.org/10.1029/2018JA025940
  37. Mathie R.A., Mann I.R. A correlation between extended intervals of ULF wave power and storm-time geosynchronous relativistic electron flux enhancements. Geophys. Res. Lett. V. 27. № 20. Р. 3261–3264. 2000. https://doi.org/10.1029/2000GL003822
  38. Mathie R.A., Mann I.R. On the solar wind control of Pc5 ULF pulsation power at mid-latitudes: Implications for MeV electron acceleration in the outer radiation belt. // J. Geophys. Res. — Space. V. 106. № A12. Р. 29783–29796. 2001. https://doi.org/10.1029/2001JA000002
  39. McGranaghan R.M., Camporeale E., Georgouli M., Anastasiadis A. Space Weather research in the Digital Age and across the full data lifecycle: Introduction to the Topical Issue // J. Space Weather Space Clim. V. 11. ID 50. 2021. https://doi.org/10.1051/swsc/2021037
  40. Myagkova I.N., Panasyuk M.I., Lazutin L.L., Muravieva E.A., Starostin L.I., Ivanova T.A., Pavlov N.N., Rubinshtein I.A., Vedenkin N.N., Vlasova N.A. December 2006 solar extreme events and their influence on the near-Earth space environment: “Universitetskiy-Tatiana” satellite observation // Advances in Space Research. V. 43. Р. 483–494. 2009. https://doi.org/10.1016/j.asr.2008.07.019
  41. Myagkova I.N., Panasyuk M.I., Denisov Yu.I. et al. Correlation between the earth’s outer radiation belt dynamics and solar wind parameters at the solar minimum according to empiric treatment data onboard the CORONAS-Photon satellite // Geomagn. Aeron. V. 51. № 7. Р. 897–901. 2011. https://doi.org/10.1134/S0016793211070164
  42. O’Brien T.P., Lorentzen K.R., Mann I.R., Meredith N.P., Blake J.B., Fennell J.F., Looper M.D., Milling D.K., Anderson R.R. Energization of relativistic electrons in the presence of ULF power and MeV microbursts: Evidence for dual ULF and VLF acceleration. // J. Geophys. Res. — Space. V. 108. № A8. 2003. https://doi.org/10.1029/2002JA009784
  43. Patel M., Hudson M., Kress D., Qin M. Simulation of ULF wave modulated electron precipitation during the 17 March 2015 Storm // J. Geophys. Res. — Space. V. 130. № 2. 2025. https://doi.org/10.1029/2024JA033115
  44. Pilipenko V., Yagova N., Romanova N., Allen J. Statistical relationships between the satellite anomalies at geostationary orbits and high-energy particles // Adv. Space Res. V. 37. Р. 1192–1205. 2006. https://doi.org/10.1016/j.asr.2005.03.152
  45. Pilipenko V., Kozyreva O., Belakhovsky V. ULF Pulsations as a driver of relativistic electrons: Pros and Cons. // Earth and Planetary Science. V. 4. № 1. Р. 1–9. 2025. https://doi.org/10.36956/cps.v4i1.1310
  46. Pokhotelov D., Rae I.J., Murphy K.R., Mann I.R., Ozeke L. Effects of ULF wave power on relativistic radiation belt electrons: 8–9 October 2012 geomagnetic storm // J. Geophys. Res. — Space. V. 121. Р. 11766–11779. 2016. https://doi.org/10.1002/2016JA023130
  47. Rae I., Murphy K.R., Watt C.E.J. et al. The role of localized compressional ultra-low frequency waves in energetic electron precipitation. // J. Geophys. Res. — Space. V. 123. № 3. Р. 1900–1914. 2018. https://doi.org/10.1002/2017JA024674
  48. Reeves G.D., Morley S.K., Friedel R.H.W., Henderson M.G., Cayton T.E., Cunningham G., Blake J.B., Christensen R.A., Thomsen D. On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited // J. Geophys. Res. V. 116. ID A02213. 2011. https://doi.org/10.1029/2010JA015735
  49. Romanova N., Pilipenko V. ULF wave indices to characterize the solar wind — magnetosopher interaction and relativistic electron dynamics // Acta Geophys. V. 57. № 1. Р. 158–170. 2008. https://doi.org/10.2478/s11600-008-0064-4
  50. Rostoker G., Skone S., Baker D.N. On the origin of relativistic electrons in the magnetosphere associated with some geomagnetic storms. // Geophys. Res. Lett. V. 25. № 19. Р. 3701–3704. 1998. https://doi.org/10.1029/98GL02801
  51. Summers D., Stone S. Analysis of radiation belt “killer” electron energy spectra // J. Geophysical Research: Space Physics. V. 127. № 9. ID e2022JA030698. 2022. https://doi.org/10.1029/2022JA030698
  52. Shi X., Zhang X.-J., Artemyev A., Angelopoulos V., Hartinger M.D., Tsai E., Wilkins C. On the role of ULF waves in the spatial and temporal periodicity of energetic electron precipitation // J. Geophys. Res. — Space. V. 127. ID e2022JA030932. 2022. https://doi.org/10.1029/2022JA030932
  53. Shprits Y.Y., Elkington S.R., Meredith N.P., Subbotin D.A. Review of modeling of losses and sources of relativistic electrons in the outer radiation belts I: Radial transport // J. Atmos. Sol. Terr. Phys. V. 70. Р. 1679–1693. 2008. https://doi.org/10.1016/j.jastp.2008.06.008
  54. Simms L.E., Engebretson M.J., Rodger C.J., Dimitrakoudis S., Mann I.R., Chi P.J. The combined influence of lower band chorus and ULF waves on radiation belt electron fluxes at individual L-shells. J. Geophys. Res.: Space Phys. V. 126. № 5. 2020. https://doi.org/10.1029/2020JA028755
  55. Stepanova M., Pinto V., Antonova E. Regarding the relativistic electron dynamics in the outer radiation belt: a historical view // Rev. Mod. Plasma Phys. V. 8. ID 25. 2024. https://doi.org/10.1007/s41614-024-00165-4
  56. Turner D.L., Shprits Y., Hartinger M. et al. Explaining sudden losses of outer radiation belt electrons during geomagnetic storms // Natural Physics. 2012. V. 8. Р. 208–212. 2012. https://doi.org/10.1038/nphys2185
  57. Varotsou A., Boscher D., Bourdarie S., Horne R.B., Glauert S.A., Meredith N.P. Simulation of the outer radiation belt electrons near geosynchronous orbit including both radial diffusion and resonant interaction with Whistler-mode chorus waves // Geophys. Res. Lett. V. 32. ID L19106. 2005. https://doi.org/10.1029/2005GL023282
  58. Ukhorskiy A.Y., Takahashi K., Anderson B.J., Korth H. Impact of toroidal ULF waves on the outer radiation belt electrons // J. Geophys. Res. V. 110. ID A10202. 2005. https://doi.org/10.1029/2005JA011017
  59. Vakulov P.V., Kovrygina L.M., Mineev Yu.V., Tverskaya L.V. Variation in intensity and spectrum of energetic electrons in Earth’s radiation belts during strong magnetic disturbances // Space Res. V. 16. Р. 523–527. 1976.
  60. Williams D.J., Arens J.F., Lanzerotti L.J. Observations of trapped electrons at low and high altitudes // J. Geophys. Res. V. 73. Р. 5673–5696. 1968.
  61. Zheng L., Chen L., Zhu H. Modeling energetic electron nonlinear wave-particle interactions with electromagnetic ion cyclotron waves // J. Geophys. Res.—Space. V. 124. Р. 3436–3453. 2019. https://doi.org/10.1029/2018JA026156

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).